The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036043 Irregular triangle read by rows: row n (n >= 0) gives number of parts in all partitions of n (in Abramowitz and Stegun order). 21

%I

%S 0,1,1,2,1,2,3,1,2,2,3,4,1,2,2,3,3,4,5,1,2,2,2,3,3,3,4,4,5,6,1,2,2,2,

%T 3,3,3,3,4,4,4,5,5,6,7,1,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5,5,5,6,6,7,8,1,

%U 2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,6,6,6,7,7,8,9

%N Irregular triangle read by rows: row n (n >= 0) gives number of parts in all partitions of n (in Abramowitz and Stegun order).

%C The sequence of row lengths of this array is p(n) = A000041(n) (partition numbers).

%C The sequence of row sums is A006128(n).

%C The number of times k appears in row n is A008284(n,k). - _Franklin T. Adams-Watters_, Jan 12 2006

%C The next level (row) gets created from each node by adding one or two more nodes. If a single node is added, its value is one more than the value of its parent. If two nodes are added, the first is equal in value to the parent and the value of the second is one more than the value of the parent. See A128628. - _Alford Arnold_, Mar 27 2007

%C The 1's in the (flattened) sequence mark the start of a new row, the value that precedes the 1 equals the row number minus one. (I.e., the 1 preceded by a 0 is the start of row 1, the 1 preceded by a 6 is the start of row 7, etc.) - _M. F. Hasler_, Jun 06 2018

%D Abramowitz and Stegun, Handbook, p. 831, column labeled "m".

%H T. D. Noe, <a href="/A036043/b036043.txt">Rows n = 0..25 of irregular triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://people.math.sfu.ca/~cbm/aands/">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], p. 831.

%H Kevin Brown, <a href="http://www.mathpages.com/home/kmath057.htm">Generalized Birthday Problem (N Items in M Bins)</a>, 1994-2010.

%H Wolfdieter Lang, <a href="/A036043/a036043.txt">Rows n = 1 ..20.</a>

%e 0;

%e 1;

%e 1, 2;

%e 1, 2, 3;

%e 1, 2, 2, 3, 4;

%e 1, 2, 2, 3, 3, 4, 5;

%e 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6;

%e 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7;

%p with(combinat): nmax:=9: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): for k from 1 to y(n) do B(k) := P(n)[k] od: for k from 1 to y(n) do s:=0: j:=0: while s<n do j:=j+1: s := s + B(k)[j]: Q(n, k):=j; end do: od: od: 0, seq(seq(Q(n, j), j=1..y(n)), n=1..nmax); # _Johannes W. Meijer_, Jun 21 2010, revised Nov 29 2012

%p # alternative implementation based on A119441 by _R. J. Mathar_, Jul 12 2013

%p A036043 := proc(n,k)

%p local pi;

%p pi := ASPrts(n)[k] ;

%p nops(pi) ;

%p end proc:

%p for n from 1 to 10 do

%p for k from 1 to A000041(n) do

%p printf("%d,",A036043(n,k)) ;

%p end do:

%p printf("\n") ;

%p end do:

%o (PARI) A036043(n,k)=#partitions(n)[k] \\ _M. F. Hasler_, Jun 06 2018

%o (SageMath) from collections import Counter

%o def A036043_row(n):

%o return [len(p) for k in (0..n) for p in Partitions(n, length=k)]

%o for n in (0..10): print(A036043_row(n)) # _Peter Luschny_, Nov 02 2019

%Y Cf. A036036, A036037, A036038, A036039, A036040, A036042.

%Y Cf. A049085, A080577.

%K nonn,easy,tabf

%O 0,4

%A _N. J. A. Sloane_

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001

%E a(0) inserted by _Franklin T. Adams-Watters_, Jun 24 2014

%E Incorrect formula deleted by _M. F. Hasler_, Jun 06 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)