%I
%S 1,1,2,3,4,5,8,10,14,18,24,30,40,49,63,78,98,120,150,182,224,271,330,
%T 396,480,572,687,817,974,1151,1367,1608,1898,2226,2614,3053,3573,4157,
%U 4844,5620,6524,7544,8731,10066,11611,13353,15356,17612,20203,23112
%N Number of partitions of n into parts not of the form 9k, 9k+4 or 9k4. Also number of partitions with at most 3 parts of size 1 and differences between parts at distance 3 are greater than 1.
%C Case k=4,i=4 of Gordon Theorem.
%D G. E. Andrews, The Theory of Partitions, AddisonWesley, 1976, p. 109.
%H Seiichi Manyama, <a href="/A035943/b035943.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) ~ cos(Pi/18) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(3)*n^(3/4)).  _Vaclav Kotesovec_, Nov 12 2015
%t nmax = 60; CoefficientList[Series[Product[1 / ((1  x^(9*k1)) * (1  x^(9*k2)) * (1  x^(9*k3)) * (1  x^(9*k6)) * (1  x^(9*k7)) * (1  x^(9*k8)) ), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 12 2015 *)
%K nonn,easy
%O 0,3
%A _Olivier GĂ©rard_
%E a(0)=1 prepended by _Seiichi Manyama_, May 08 2018
