%I #18 Aug 27 2018 08:14:50
%S 1,82,3362,91922,1886082,30986898,424744994,4997717714,51545165314,
%T 473520842194,3924107038242,29639860428690,205809135461250,
%U 1323260582502930,7926934099341090,44480732247900498,234899820107413506
%N Coordination sequence for 41-dimensional cubic lattice.
%H Seiichi Manyama, <a href="/A035736/b035736.txt">Table of n, a(n) for n = 0..10000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_41">Index entries for linear recurrences with constant coefficients</a>, signature (41, -820, 10660, -101270, 749398, -4496388, 22481940, -95548245, 350343565, -1121099408, 3159461968, -7898654920, 17620076360, -35240152720, 63432274896, -103077446706, 151584480450, -202112640600, 244662670200, -269128937220, 269128937220, -244662670200, 202112640600, -151584480450, 103077446706, -63432274896, 35240152720, -17620076360, 7898654920, -3159461968, 1121099408, -350343565, 95548245, -22481940, 4496388, -749398, 101270, -10660, 820, -41, 1).
%F G.f.: ((1+x)/(1-x))^41.
%F n*a(n) = 82*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 27 2018
%K nonn,easy
%O 0,2
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 25 1998