Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 05 2023 15:04:55
%S 1,40,800,10680,107200,864008,5831520,33940120,174074240,800061160,
%T 3340552608,12819218040,45663942720,152270990280,478683156960,
%U 1426865410392,4052167914240,11006991835560,28691971995680,71976895917880
%N Coordination sequence for lattice D*_20 (with edges defined by l_1 norm = 1).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
%F a(m)=add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n)+2^n*binomial((n+2*m)/2-1, n-1); with n=20.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, J. Serra-Sagrista (jserra(AT)ccd.uab.es)