login
Zeckendorf expansion of n: repeatedly subtract the largest Fibonacci number you can until nothing remains.
5

%I #15 Sep 29 2018 18:43:37

%S 0,1,2,3,13,5,15,25,8,18,28,38,138,13,113,213,313,1313,513,1513,2513,

%T 21,121,221,321,1321,521,1521,2521,821,1821,2821,3821,13821,34,134,

%U 234,334,1334,534,1534,2534,834,1834,2834,3834,13834,1334,11334,21334

%N Zeckendorf expansion of n: repeatedly subtract the largest Fibonacci number you can until nothing remains.

%D Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

%H Reinhard Zumkeller, <a href="/A035515/b035515.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>

%e 16 = 13 + 3, so a(16)=3_13 => 313.

%o (Haskell)

%o a035515 n = a035515_list !! (n-1)

%o a035515_list = map (read . concatMap show) a035517_tabf :: [Integer]

%o -- _Reinhard Zumkeller_, Mar 10 2013

%Y Cf. A035517, A035514, A035516.

%K nonn,easy,base

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Dec 13 1999