%I #33 Aug 11 2022 11:55:44
%S 5,18,26,39,52,60,73,81,94,107,115,128,141,149,162,170,183,196,204,
%T 217,225,238,251,259,272,285,293,306,314,327,340,348,361,374,382,395,
%U 403,416,429,437,450,458,471,484,492,505,518,526,539,547,560,573,581,594
%N 4th column of Wythoff array.
%H Seiichi Manyama, <a href="/A035338/b035338.txt">Table of n, a(n) for n = 0..10000</a>
%H J. H. Conway and N. J. A. Sloane, <a href="/A019586/a019586.pdf">Notes on the Para-Fibonacci and related sequences</a>
%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Kimberling/kimberling719a.html">Complementary equations and Wythoff Sequences</a>, JIS 11 (2008) 08.3.3
%H N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>
%p t := (1+sqrt(5))/2 ; [ seq(5*floor((n+1)*t)+3*n,n=0..80) ];
%t f[n_] := 5 Floor[(n + 1) GoldenRatio] + 3n; Array[f, 54, 0] (* _Robert G. Wilson v_, Dec 11 2017 *)
%o (Python)
%o from math import isqrt
%o def A035338(n): return 5*(n+1+isqrt(5*(n+1)**2)>>1)+3*n # _Chai Wah Wu_, Aug 11 2022
%Y Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
%K nonn
%O 0,1
%A _N. J. A. Sloane_ and _J. H. Conway_