Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 24 2015 10:27:50
%S 1,0,1,3,19,135,1204,12537,150556,2043930,30969211,517973148,
%T 9478800604,188381470095,4040440921699,93020386382742,
%U 2287969523647171,59877222907995675,1661259526266784171,48705364034046758493,1504614657169716311674,48848750173492332588525
%N Number of increasing rooted polygonal cacti (Husimi graphs) with n nodes.
%C Nodes are numbered and the numbers increase as you move away from the root to any point on the same polygon.
%D F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 301 and Chapter 5.
%D F. Harary and E. M. Palmer, Graphical Enumeration, p. 71.
%H Alois P. Heinz, <a href="/A035086/b035086.txt">Table of n, a(n) for n = 1..200</a>
%H F. Harary and R. Z. Norman, <a href="http://www.jstor.org/stable/1969824">The Dissimilarity Characteristic of Husimi Trees</a>, Annals of Mathematics, 58 1953, pp. 134-141.
%H F. Harary and G. E. Uhlenbeck, <a href="http://www.pnas.org/content/39/4/315.full.pdf">On the Number of Husimi Trees</a>, Proc. Nat. Acad. Sci. USA vol. 39 pp. 315-322 1953.
%H <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a>
%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F E.g.f. satisfies A'(x) = exp(A(x)^2/(2-2*A(x))).
%p A:= proc(n) option remember; if n<=1 then x else convert(series(Int(exp(A(n-1)^2/ (2-2*A(n-1))), x), x=0, n+1), polynom) fi end; a:= n-> coeff(A(n), x, n)*n!: seq(a(n), n=1..22); # _Alois P. Heinz_, Aug 22 2008
%t max = 22; sy = Series[Integrate[E^(-(y^2/(2-2*y))), y], {y, 0, max}]; sx = Normal[ InverseSeries[sy, x]]; a[n_] := Coefficient[sx, x, n]*n!; Table[a[n], {n, 1, max }] (* _Jean-François Alcover_, Feb 24 2015 *)
%Y Cf. A035082-A035088.
%K nonn,eigen
%O 1,4
%A _Christian G. Bower_, Nov 15 1998