login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 1 + 4*A034780(n).
1

%I #12 May 14 2018 20:24:38

%S 29,53,101,109,149,173,181,197,229,269,293,317,337,349,373,389,461,

%T 509,557,569,641,653,677,701,709,773,797,821,829,853,937,941,1013,

%U 1021,1033,1061,1069,1109,1117,1181,1193,1217,1229,1277,1297,1301,1373,1429,1481,1493,1549,1597

%N a(n) = 1 + 4*A034780(n).

%C a(n) = P(n,4) = 1 + 4*K(n,4) = 1 + 4*A034780(n). P(n,4) are special primes of the form 4k+1. The relevant values of k are given by A034780.

%C Note that, e.g., 5 and 13 are not in this sequence.

%o (PARI) a034693(n) = my(s=1); while(!isprime(s*n+1), s++); s;

%o isok(n) = a034693(n) == 4;

%o lista(nn) = {for (n=1, nn, if (isok(n), print1(4*n+1, ", ")););} \\ _Michel Marcus_, May 13 2018

%Y Cf. A034693, A034694, A034780.

%K nonn

%O 1,1

%A _Labos Elemer_

%E More terms from _Michel Marcus_, May 13 2018