%I #18 Oct 09 2019 03:37:12
%S 0,0,0,0,0,1,7,32,131,516,1988,7664,29765,117169,467266,1880517,
%T 7588675,30491836,121191234,473940269,1816579108,6806904522,
%U 24897540538,88831250408,309108741706,1049278764758,3476233500031,11246972937210,35561409388625,109967835029368,332834886787933,986732945823099
%N Number of binary [ n,6 ] codes.
%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.
%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_6.html">Wnk2: Number of the isometry classes of all binary (n,k)-codes</a>. [See column k=6.]
%H H. Fripertinger and A. Kerber, <a href="https://www.researchgate.net/publication/2550138_Isometry_Classes_of_Indecomposable_Linear_Codes">Isometry classes of indecomposable linear codes</a>, preprint, 1995. [We have a(n) = W_{n,6,2}; see p. 4 of the preprint.]
%H H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [We have a(n) = W_{n,6,2}; see p. 197.]
%H Petros Hadjicostas, <a href="/A034356/a034356_1.txt">Generating function for a(n)</a>.
%Y Cf. A034253, A034254.
%Y Column k=6 of both A034356 and A076831 (which are the same except for column k=0).
%Y First differences give A034347.
%K nonn
%O 1,7
%A _N. J. A. Sloane_
%E More terms from _Joerg Arndt_, Oct 09 2019