login
Number of binary [ n,5 ] codes.
3

%I #22 Oct 09 2019 15:20:02

%S 0,0,0,0,1,6,23,77,240,705,1988,5468,14724,39006,101818,261924,663748,

%T 1655781,4062110,9793065,23186825,53896597,122975627,275449464,

%U 605794093,1308633243,2777847319,5797093774,11900199553,24042491094,47833081481,93765335118,181200186060,345389067067,649704599010

%N Number of binary [ n,5 ] codes.

%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.

%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_6.html">Wnk2: Number of the isometry classes of all binary (n,k)-codes</a>. [See column k=5.]

%H H. Fripertinger and A. Kerber, <a href="https://www.researchgate.net/publication/2550138_Isometry_Classes_of_Indecomposable_Linear_Codes">Isometry classes of indecomposable linear codes</a>, preprint, 1995. [We have a(n) = W_{n,5,2}; see p. 4 of the preprint.]

%H H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [We have a(n) = W_{n,5,2}; see p. 197.]

%H Petros Hadjicostas, <a href="/A034356/a034356.txt">Generating function for a(n)</a>.

%Y Cf. A034253, A034254.

%Y Column k=5 of both A034356 and A076831 (which are the same except for column k=0).

%Y First differences give A034346.

%K nonn

%O 1,6

%A _N. J. A. Sloane_

%E More terms from _Joerg Arndt_, Oct 09 2019