%I #20 Oct 06 2019 01:54:36
%S 0,0,0,0,0,1,6,25,99,385,1472,5676,22101,87404,350097,1413251,5708158,
%T 22903161,90699398,352749035,1342638839,4990325414,18090636016,
%U 63933709870,220277491298,740170023052,2426954735273,7770739437179,24314436451415,74406425640743,222867051758565,653898059035166
%N Number of binary [ n,6 ] codes without 0 columns.
%H Discrete algorithms at the University of Bayreuth, <a href="http://www.algorithm.uni-bayreuth.de/en/research/SYMMETRICA/">Symmetrica</a>.
%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>.
%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables_4.html">Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns</a>. [See column k=6.]
%H H. Fripertinger and A. Kerber, <a href="https://doi.org/10.1007/3-540-60114-7_15">Isometry classes of indecomposable linear codes</a>. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,6,2}.]
%H Petros Hadjicostas, <a href="/A034253/a034253_2.txt">Generating function for a(n)</a>.
%H Petr Lisonek, <a href="https://doi.org/10.1016/j.jcta.2006.06.013">Combinatorial families enumerated by quasi-polynomials</a>, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
%H David Slepian, <a href="https://archive.org/details/bstj39-5-1219">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H David Slepian, <a href="https://doi.org/10.1002/j.1538-7305.1960.tb03958.x">Some further theory of group codes</a>, Bell System Tech. J. 39(5) (1960), 1219-1252.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cycle_index">Cycle index</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Projective_linear_group">Projective linear group</a>.
%o (Sage) # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
%o def A034253col(k, length):
%o G1 = PSL(k, GF(2))
%o G2 = PSL(k-1, GF(2))
%o D1 = G1.cycle_index()
%o D2 = G2.cycle_index()
%o f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
%o f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
%o f = f1 - f2
%o return f.taylor(x, 0, length).list()
%o # For instance the Taylor expansion for column k = 6 (this sequence gives
%o print(A034253col(6, 30)) # _Petros Hadjicostas_, Oct 05 2019
%Y Cf. A034254, A034344, A034345, A034346, A034348, A034349, A253186.
%Y First differences of A034360.
%Y Column k = 6 of A034253.
%K nonn
%O 1,7
%A _N. J. A. Sloane_.
%E More terms from _Petros Hadjicostas_, Oct 05 2019