login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A027818.
4

%I #31 Sep 08 2022 08:44:51

%S 0,1,15,99,435,1485,4257,10725,24453,51480,101530,189618,338130,

%T 579462,959310,1540710,2408934,3677355,5494401,8051725,11593725,

%U 16428555,22940775,31605795,43006275,57850650,76993956,101461140,132473044,171475260,220170060,280551612

%N Partial sums of A027818.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 194-196.

%H G. C. Greubel, <a href="/A034266/b034266.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (7*n+1)*binomial(n+6, 7)/8.

%F G.f.: x*(1+6*x)/(1-x)^9.

%F E.g.f.: x*(8! +262080*x +383040*x^2 +210000*x^3 +52080*x^4 +6216*x^5 + 344*x^6 +7*x^7)*exp(x)/8!

%p f:=n->(7*n+8)*binomial(n+7, 7)/8; [seq(f(n),n=-1..40)]; # _N. J. A. Sloane_, Mar 25 2015

%t CoefficientList[Series[x(1+6x)/(1-x)^9, {x, 0, 30}], x] (* _Vincenzo Librandi_, Mar 20 2015 *)

%t Table[(7*n+1)*Binomial[n+6,7]/8, {n,0,35}] (* _G. C. Greubel_, Aug 29 2019 *)

%o (PARI) lista(nn) = for (n=0, nn, print1((7*n+1)*binomial(n+6,7)/8, ", ")); \\ _Michel Marcus_, Mar 20 2015

%o (Magma) [0] cat [(7*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // _Vincenzo Librandi_, Mar 20 2015

%o (Sage) [(7*n+1)*binomial(n+6,7)/8 for n in (0..35)] # _G. C. Greubel_, Aug 29 2019

%o (GAP) List([0..35], n-> (7*n+1)*Binomial(n+6,7)/8); # _G. C. Greubel_, Aug 29 2019

%Y a(n)=f(n, 6) where f is given in A034261.

%Y Cf. A027818, A053367, A034266.

%Y Cf. A093564 ((7, 1) Pascal, column m=8).

%Y Cf. similar sequences listed in A254142.

%K easy,nonn

%O 0,3

%A _Clark Kimberling_

%E Better description from _Barry E. Williams_, Jan 25 2000

%E Corrected and extended by _N. J. A. Sloane_, Apr 21 2000

%E More terms from _Michel Marcus_, Mar 20 2015