login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033596
a(n) = (n^2 - 1)*(n^2 - 3).
1
3, 0, 3, 48, 195, 528, 1155, 2208, 3843, 6240, 9603, 14160, 20163, 27888, 37635, 49728, 64515, 82368, 103683, 128880, 158403, 192720, 232323, 277728, 329475, 388128, 454275, 528528, 611523, 703920, 806403, 919680, 1044483, 1181568, 1331715, 1495728, 1674435
OFFSET
0,1
FORMULA
From Wesley Ivan Hurt, Oct 30 2014: (Start)
G.f.: 3*(1 -5*x +11*x^2 +x^3)/(1-x)^5.
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5).
a(n) = (n^2-1)*(n^2-3) = (A000290(n)-1)*(A000290(n)-3) = A000583(n) - A082109(n+1). (End)
E.g.f.: (3 - 3*x + 3*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Mar 05 2020
MAPLE
A033596:=n->(n^2-1)*(n^2-3): seq(A033596(n), n=0..30); # Wesley Ivan Hurt, Oct 30 2014
MATHEMATICA
Table[(n^2 - 1)*(n^2 - 3), {n, 0, 30}] (* or *)
CoefficientList[Series[3 (1 - 5 x + 11 x^2 + x^3)/(1 - x)^5, {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2014 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {3, 0, 3, 48, 195}, 40] (* Harvey P. Dale, Nov 20 2024 *)
PROG
(Magma) [(n^2-1)*(n^2-3) : n in [0..30]]; // Wesley Ivan Hurt, Oct 30 2014
(PARI) vector(31, n, my(m=n-1); (m^2-1)*(m^2-3)) \\ G. C. Greubel, Mar 05 2020
(Sage) [(n^2-1)*(n^2-3) for n in (0..30)] # G. C. Greubel, Mar 05 2020
CROSSREFS
Cf. A000290 (n^2), A000583 (n^4), A082109.
Sequence in context: A279657 A272722 A229694 * A063529 A136667 A004588
KEYWORD
nonn,easy
STATUS
approved