%I #20 Feb 03 2019 10:57:41
%S 1,3,-1,-26,29,756,-1793,-45744,189513,4700260,-30515629,-730341600,
%T 6948349069,159130156836,-2123506814505,-46081244842304,
%U 838034409016721,17029766318842692,-414549408916313189,-7774211453384941440,251026027696302116181,4263756050277024153028
%N Logarithmic (or "LOG") transform of squares A000290.
%H Alois P. Heinz, <a href="/A033464/b033464.txt">Table of n, a(n) for n = 0..435</a>
%F E.g.f.: exp(x)*(1 + 3*x + x^2)/(1 + exp(x)*x*(1 + x)). - _Ilya Gutkovskiy_, Mar 06 2018
%p logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end; n->b(n+1) end: a:= logtr(n-> n^2): seq(a(n), n=0..25); # _Alois P. Heinz_, Sep 14 2008
%t With[{nn=30},CoefficientList[Series[(Exp[x](1+3x+x^2))/(1+Exp[x]x(1+x)),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Feb 03 2019 *)
%Y Cf. A000290, A033462.
%K sign
%O 0,2
%A _N. J. A. Sloane_.