login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033289 Odd power perfect numbers: numbers k such that opsigma(k) = 2*k, where opsigma(k) = A033634(k). 2

%I

%S 6,264,45408,10177920,9310826880,27806077440,25437179036160,

%T 303753589954560,277875743791011840,14504815632384,13269098919960576,

%U 2534919599177957376,2318960803647990104064

%N Odd power perfect numbers: numbers k such that opsigma(k) = 2*k, where opsigma(k) = A033634(k).

%C If x is OPP and x=2^k*y, gcd(2^k,y)=1, (2^(k+4)+1)/3 is prime, then 4*x*(2^(k+4)+1)/3 is also OPP.

%C By applying the rule above to a(12) we get that 1772040615644549459607552 is also a term. - _Amiram Eldar_, Aug 26 2022

%F {k: A033634(k) = 2*k}.

%t f[e_] := If[OddQ[e], e+2, e+1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); opsigma[1] = 1; opsigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[50000], opsigma[#] == 2*# &] (* _Amiram Eldar_, Aug 26 2022 *)

%Y Cf. A000978, A033634.

%K nonn,more

%O 1,1

%A _Yasutoshi Kohmoto_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 12:09 EDT 2023. Contains 361570 sequences. (Running on oeis4.)