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Peter Bala, Feb 2025

We �nd two factorisations of an element of the Bell subgroup of the Riordan
group as an in�nite product of arrays and also two factorisations of an element
of the derivative subgroup of the exponential Riordan group as an in�nite
product of arrays.

1. The forward arrow operator →

Let M = (M(n, k))n,k≥0 be an in�nite lower triangular array and let Ik,
k = 0, 1, 2, . . ., denote the square k x k identity matrix (all our arrays have row
and column indices starting at 0). De�ne M(k) as the in�nite lower triangular
block array

M(k) =

 Ik 0

0T M


so, in particular, M(0) = M . De�ne

−→
M as the in�nite matrix product

−→
M = M(0)M(1)M(2) · · · . (1)

Clearly,
−→
M is well-de�ned.

Example 1.1 Let U be the lower triangular array with all entries on and
below the main diagonal equal to 1. Let P denote Pascal's triangle A007318.

Then
−→
U = P .

1 0 0 0 . . .
1 1 0 0 . . .
1 1 1 0 . . .
1 1 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 1 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .

 · · · =

1 0 0 0 . . .
1 1 0 0 . . .
1 2 1 0 . . .
1 3 3 1 . . .
...

...
...

...
. . .


This is a well-known result [1, Theorem 1].

Example 1.2. Let S2 denote the triangle of Stirling numbers of the second
kind A008277 (but with di�erent row and column indexing from that used in

the OEIS). Then
−→
P = S2 [3, Theorem 2.2].

1 0 0 0 . . .
1 1 0 0 . . .
1 2 1 0 . . .
1 3 3 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 1 2 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .

 · · · =

1 0 0 0 . . .
1 1 0 0 . . .
1 3 1 0 . . .
1 7 6 1 . . .
...

...
...

...
. . .
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The Hockey-Stick identity

From the de�nition (1) of the forward arrow operator we have

−−−→
M(1) = M(1)M(2)M(3) · · · =

 1 0

0T
−→
M

 .

Hence, from (1),

−→
M = M

 1 0

0T
−→
M

 . (2)

An immediate consequence of (2) is that columns 0 of M and
−→
M are equal.

Equating entries in position (n+1, k+1) on both sides of (2) yields a 'vertical'

recurrence equation for the entries of
−→
M :

−→
M(n+ 1, k + 1) =

n∑
i=k

M(n+ 1, i+ 1)
−→
M(i, k) (3)

with the boundary conditions
−−−−−→
M(n, 0) = M(n, 0) for n = 0, 1, 2, .... This recur-

rence is called the hockey-stick identity.

For instance, for Example 1.2, the hockey-stick identity reads

Stirling2(n+ 1, k) =

n∑
i=k−1

(
n

i

)
Stirling2(i, k − 1),

a well-known recurrence for the Stirling numbers of the second kind.

Remark 1. If M is invertible then we can rewrite (2) as

M−1−→M =

 1 0

0T
−→
M


and obtain a second recurrence for the elements of

−→
M :

−→
M(n, k) =

n+1∑
i=0

M−1(n+ 1, i)
−→
M(i, k + 1). (4)

In the case of Example 1.2, we obtain a less well-known recurrence for the
Stirling numbers of the second kind:

Stirling2(n, k) =

n∑
i=0

(−1)n+i

(
n

i

)
Stirling2(i+ 1, k + 1).
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2. The backward arrow operator ←

We also consider in�nite matrix products running from right to left. Given a

lower triangular array M , we de�ne the array
←−
M as the in�nite matrix product

←−
M = · · ·M(2)M(1)M(0) . (5)

The forward and backward arrow operators are related via matrix inversion
(assuming M is invertible) and matrix transposition as follows:

←−
M =

(−−−→
M−1

)−1

=

(−−→
MT

)T

. (6)

Clearly, from (5), we have

←−
M =

 1 0

0T
←−
M

M (7)

leading to a 'horizontal' recurrence equation for the entries of
←−
M :

Row k = 0 :
←−
M(0, 0) = M(0, 0) and for n ≥ k ≥ 0,

←−
M(n+ 1, k) =

n∑
i=0

M(i+ 1, k)
←−
M(n, i). (8)

Remark 2. If M is invertible then further relations between the entries of
←−
M

can be found by rewriting (7) as

←−
MM−1 =

 1 0

0T
←−
M

 .

For example, when k ≥ 1, we have

←−
M(n, k) =

n+1∑
i=k+1

M−1(i, k + 1)
←−
M(n+ 1, i). (9)

Example 2.1.
←−
U = C, where C denotes the Catalan triangle A033184.

· · ·


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 1 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
1 1 0 0 . . .
1 1 1 0 . . .
1 1 1 1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
1 1 0 0 . . .
2 2 1 0 . . .
5 5 3 1 . . .
...

...
...

...
. . .
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For this example, the recurrences (8) and (9) give

C(n+ 1, k) =

n∑
i=k−1

C(n, i) for k ≥ 1

and
C(n+ 1, k) = C(n, k − 1) + C(n+ 1, k + 1) for k ≥ 1.

Example 2.1 is a particular case of Theorem 1 (ii) proved below. Another case
of Theorem 1 (ii) is the following known result.

Example 2.2. Let S1 denote the triangle of unsigned Stirling numbers of the

�rst kind A130534.. Then
←−
P = S1.

...


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 1 2 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
1 1 0 0 . . .
1 2 1 0 . . .
1 3 3 1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
1 1 0 0 . . .
2 3 1 0 . . .
6 11 6 1 . . .
...

...
...

...
. . .


A common feature shared by the above examples is that the arrays U , P ,

S1, S2 and C are examples of Riordan arrays, either in the Riordan group or
the exponential Riordan group. This suggests we look at the action of the
forward and backward arrow operators on Riordan arrays.

3. Riordan arrays

We recall some basic facts about Riordan arrays. Riordan arrays are a
special type of in�nite lower triangular matrices de�ned by two generating
functions

f(x) = f0 + f1x+ f2x
2 + · · ·

g(x) = g1x+ g2x
2 + g3x

3 + · · ·

with f0 6= 0 and g1 6= 0. The Riordan array associated with this pair of
series, denoted by (f(x), g(x)), is de�ned as the in�nite lower triangular array
whose k-th column is formed from the coe�cients of the power series f(x)g(x)k,
k = 0, 1, 2, ....
The Riordan group is the set of all Riordan arrays with the group operation

being matrix multiplication. The group law is given by

(f(x), g(x)) ∗ (h(x), l(x)) = (f(x)h(g(x)), l(g(x))). (10)

The identity element of the Riordan group is (1, x). The inverse of the array

(f(x), g(x)) is the array
(

1
f(g<−1>(x)) , g

<−1>(x)
)
, where g<−1>(x) denotes the

compositional inverse of g(x), that is, g(g<−1>(x)) = g<−1>(g(x)) = x.

4

https://oeis.org/A130534


The two sets of Riordan arrays of the form (f(x), x) and (f(x), xf(x)) are
easily seen to be subgroups of the Riordan group, known respectively as the
the Appell subgroup and the Bell subgroup.

For the arrays considered in the above examples, U =

(
1

1− x
, x

)
belongs to

the Appell subgroup of the Riordan group. Both Pascal's triangle

P =

(
1

1− x
,

x

1− x

)
and the Catalan triangle C = (c(x), xc(x)), where

c(x) =
1−
√
1− 4x

2x
is the generating function of the Catalan numbers

A000108, belong to the Bell subgroup of the Riordan group.

Exponential Riordan arrays are a special type of in�nite lower triangular
matrices de�ned by two exponential generating functions (e.g.f's)

f(x) = f0 + f1x/1! + f2x
2/2! + · · ·

g(x) = g1x/1! + g2x
2/2! + g3x

3/3! + · · ·

with f0 6= 0 and g1 6= 0. The exponential Riordan array associated with this
pair of series, denoted by [f(x), g(x)], is de�ned as the in�nite lower triangular

array whose k-th column has the e.g.f.
1

k!
f(x)g(x)k, k = 0, 1, 2, .... The

exponential Riordan group is the set of all Riordan arrays with the group
operation being matrix multiplication. The group law is the same as (10).

The set of exponential Riordan arrays of the form

[
dg(x)

dx
, g(x)

]
form a

subgroup of the exponential Riordan group called the derivative subgroup. The
triangles S1 and S2 of Stirling numbers of the �rst and second kinds both lie
in the derivative subgroup of the exponential Riordan group.

S1 =

[
1

1− x
, log

(
1

1− x

)]
, S2 = [ex, ex − 1] .

4. The action of the forward and backward arrow operators on the

Appell subgroup of the Riordan group

The examples
−→
U = P and

←−
U = C given above are particular cases of our

�rst result below showing that both the forward and backward arrow
operators map the Appell subgroup of the Riordan group onto the Bell
subgroup of the Riordan group. In what follows, the superscript <-1>
indicates series reversion while the superscript -1 indicates matrix inversion.
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Theorem 1. Let M = (f(x), x) be a Riordan array in the Appell subgroup of
the Riordan group. Then
(i)

−→
M = (f(x), xf(x))

belongs to the Bell subgroup of the Riordan group.

(ii) The array
←−
M = (F (x), xF (x)),

where

F (x) =
1

x

(
x

f(x)

)<−1>

.

←−
M also belongs to the Bell subgroup of the Riordan group.

Proof.

(i) The Riordan array (f(x), xf(x)) factorises in the Riordan group as

(f(x), xf(x)) = (f(x), x) (1, xf(x)) . (11)

The k-th column of the Riordan array (1, xf(x)) has the o.g.f. (xf(x))
k
. If we

write the array (1, xf(x)) in block diagonal form as

[
1 0
0 X

]
then, for k ≥ 0,

the k-th column of the array X has the o.g.f.
1

x
(xf(x))k+1 = xkf(x)k+1. Thus

X is the Riordan array (f(x), xf(x)) and by (11) we have the factorisation

(f(x), xf(x)) = (f(x), x) (1, xf(x))

= (f(x), x)

 1 | 0
− | −
0T | (f(x), xf(x))

 . (12)

Iterating (12) yields

(f(x), xf(x)) = (f(x), x)

 1 | 0
− | −
0T |

−−−−−→
(f(x), x)


=
−−−−−→
(f(x), x)

by (2).
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(ii) By (6), the inverse Riordan array(←−−−−−
(f(x), x)

)−1

=
−−−−−−−−−−→(
(f(x), x)

−1
)

=

−−−−−−−→(
1

f(x)
, x

)

=

(
1

f(x)
,

x

f(x)

)

by part (i).

Hence,

←−−−−−
(f(x), x) =

(
1

f(x)
,

x

f(x)

)−1

=

f

( x

f(x)

)<−1>
 ,

(
x

f(x)

)<−1>


=

 1

x

(
x

f(x)

)<−1>

,

(
x

f(x)

)<−1>


where, in the �nal step, we used the fact that if g(x) = (x/f(x))<−1> then

g(x)/f(g(x)) = x, and so f(g(x)) = g(x)/x = 1/x(x/f(x))
<−1>

. �

Example 4.1.

−→
Uk =

−−−−−−−−−→(
1

1− kx
, x

)
=

(
1

1− kx
,

x

1− kx

)
= P k = (

−→
U )k.

Example 4.2.

←−
Uk =

←−−−−−−−−−(
1

1− kx
, x

)
=

(
1

x
(x(1− kx))<−1>, (x(1− kx))<−1>

)

= (c(kx), xc(kx)) ,

where c(x) =
1−
√
1− 4x

2x
is the generating function of the Catalan numbers.
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5. The action of the forward and backward arrow operators on the

derivative subgroup of the exponential Riordan group

Recall that Pascal's triangle P is also the exponential Riordan array [ex, x]
belonging to the Appell subgroup of the exponential Riordan group. The

examples
−→
P = S2 = [ex, ex − 1] and

←−
P = S1 =

[
1

1−x , log
1

1−x

]
given above are

particular cases of our next theorem showing that both the forward and
backward arrow operators map the Appell subgroup of the exponential
Riordan group onto the derivative subgroup of the exponential Riordan group.
The proofs are essentially the same as in Theorem 1, the main di�erence is
that when working with ordinary generating functions division by x acts as a
lowering operator on the monomial polynomials:

1

x
xn = xn−1;

the corresponding operator when working with exponential generating functions
is di�erentiation:

d

dx

(
xn

n!

)
=

xn−1

(n− 1)!
.

Theorem 2. Let M = [f(x), x] be an exponential Riordan array belonging to
the exponential Appell group. Then

(i)
−→
M =

[
f(x),

� x

0

f(t) dt

]
belongs to the derivative subgroup of the exponential Riordan group.

(ii)

←−
M =

[
F (x),

� x

0

F (t) dt

]
,

where

F (x) =
d

dx

((� x

0

dt

f(t)

)<−1>
)
.

←−
M also belongs to the derivative subgroup of the exponential Riordan group.

Proof.

(i) The exponential Riordan array

[
f(x),

� x

0

f(t) dt

]
factorises as

[
f(x),

� x

0

f(t) dt

]
= [f(x), x]

1, �
0

x

f(t) dt

 . (13)
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The k-th column in the exponential Riordan array

[
1,

� x

0

f(t) dt

]
has the

e.g.f.
1

k!

(� x

0

f(t) dt

)k

. If we write the array array

[
1,

� x

0

f(t) dt

]
in block

diagonal form as

[
1 0
0T X

]
then, for k ≥ 0, the k-th column in the array X

has the e.g.f.

d

dx

(
1

(k + 1)!

(� x

0

f(t) dt

)k+1
)

=
1

k!

(� x

0

f(t) dt

)k

f(x).

Thus X is the exponential Riordan array

[
f(x),

� x

0

f(t) dt

]
.

Hence, from (13),

[
f(x),

� x

0

f(t) dt

]
= [f(x), x]

1, �
0

x

f(t) dt



= [f(x), x]


1 | 0
− | −

0T |
[� x

0

f(t) dt

]
 . (14)

Iterating (14) yields

[
f(x),

� x

0

f(t) dt

]
= [f(x), x]

 1 | 0
− | −
0T |

−−−−−→
[f(x), x]


=
−−−−−→
[f(x), x]

by (2).

(ii) By (6), the inverse Riordan array(←−−−−−
[f(x), x]

)−1

=
−−−−−−−−−→(
[f(x), x]−1

)
=

−−−−−−→[
1

f(x)
, x

]

=

[
1

f(x)
,

� x

0

dt

f(t)

]

by part (i).
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Hence,

←−−−−−
[f(x), x] =

 1

f(x)
,

�

0

x dt

f(t)

−1

=
[
f
(
g<−1>(x)

)
, g<−1>(x)

]
, (15)

where

g(x) =

�

0

x dt

f(t)
. (16)

Di�erentiating the identity g(g<−1>(x)) = x with respect to x yields, by the
chain rule,

dg<−1>

dx
(x) =

1

dg

dx
(g<−1>(x))

= f
(
g<−1>(x)

)
,

since, by (16),
dg(x)

dx
=

1

f(x)
.

Thus, by (15),

←−−−−−
[f(x), x] =

[
dg<−1>

dx
(x), g<−1>(x)

]

=

F (x),

�

0

x

F (t) dt


belongs to the derivative subgroup of the exponential Riordan group, where

F (x) =
dg<−1>

dx
(x) =

d

dx

((� x

0

dt

f(t)

)<−1>
)

by (16). �

Example 5.1. A094587, the triangle of permutation coe�cients, is the

exponential Riordan array

[
1

1− x
, x

]
.

By Theorem 2 (i),
−−−−−→
A094587 =

[
1

1− x
, log

(
1

1− x

)]
= S1, the triangle of

unsigned Stirling numbers of the �rst kind A130534.
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1 0 0 0 . . .
1 1 0 0 . . .
2 2 1 0 . . .
6 6 3 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 2 2 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .

 · · · =

1 0 0 0 . . .
1 1 0 0 . . .
2 3 1 0 . . .
6 11 6 1 . . .
...

...
...

...
. . .


Example 5.2. Let M = [1 + x, x]. Then, in the notation of Theorem 2 (ii),

←−
M =

[
F (x),

� x

0

F (t) dt

]
,

where

F (x) =
d

dx

((� x

0

dt

1 + t

)<−1>
)

= ex.

Hence
←−
M = [ex, ex − 1]= S2, the triangle of Stirling numbers of the second kind.

· · ·


1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 1 0 . . .
0 0 2 1 . . .
...

...
...

...
. . .




1 0 0 0 . . .
1 1 0 0 . . .
0 2 1 0 . . .
0 0 3 1 . . .
...

...
...

...
. . .

 =


1 0 0 0 . . .
1 1 0 0 . . .
1 3 1 0 . . .
1 7 6 1 . . .
...

...
...

...
. . .


6. q -analogues of arrays and sequences

A q-analogue of a sequence of numbers is typically a sequence of polyno-
mials in q that reduces to the number sequence when q = 1, and satis�es similar
algebraic properties, such as recurrences, to the number sequence. One appli-
cation of the forward and backward arrow operators is to produce q-analogues
of sequences and arrays.

Let M be a lower triangular array. Suppose M(q) is a q-analogue of M .

Then
−−−→
M(q) is a candidate for a q-analogue of

−→
M .

M − − →
−→
M

| |
q − analogue | | q − analogue

↓ ↓
M(q) − − →

−−−→
M(q)

Similarly,
←−−−
M(q) is a candidate for a q-analogue of

←−
M.
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Example 6.1. Let U(q) denote the Riordan array

(
1

1− x
, qx

)
regarded as a

q-analogue of the Riordan array U =

(
1

1− x
, x

)
. Then

−−→
U(q) is a q-analogue

of Pascal's triangle P =
−→
U . The �rst few rows of

−−→
U(q) are shown below.


1 0 0 0 . . .
1 q 0 0 . . .
1 q q2 0 . . .
1 q q2 q3 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 1 q 0 . . .
0 1 q q2 . . .
...

...
...

...
. . .




1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 0 1 q . . .
...

...
...

...
. . .

 · · · =



1 0 0 0 . . .
1 q 0 0 . . .

1 q

[
2
1

]
q

q3 0 . . .

1 q

[
3
1

]
q

q3
[

3
2

]
q

q6 . . .

...
...

...
...

. . .



where

[
n
k

]
q

is a q-binomial coe�cient.

The row generating polynomials of
−−→
U(q) factorise into linear factors and give a

q-analogue of the Binomial Theorem:

n∏
i=1

(
1 + qiz

)
=

n∑
k=0

qk(k+1)/2

[
n
k

]
q

zk.

Example 6.2. As we saw in Example 2.1,
←−
U is the Catalan triangle

A033184, whose �rst column is the sequence of Catalan numbers. Thus the

�rst column of
←−−
U(q), which begins

[1, 1, 1 + q, 1 + 2q + q2 + q3, 1 + 3q + 3q2 + 3q3 + 2q4 + q5 + q6, ...],

is a candidate for a q-analogue of the Catalan numbers.

These polynomials appear to be the area generating functions Cn(q) of Dyck
paths introduced by Carlitz and Riordan. See [2, Proposition 1.6.1, p. 8].
They satisfy the recurrrence

Cn(q) =

n−1∑
k=1

qk−1Ck(q)Cn−k(q), n ≥ 2,

with C(1, q) = 1.
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