login
Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).
4

%I #24 Mar 05 2015 12:50:26

%S 1,2,4,8,10,20,31,34,40,529,5041,15347,25318,28321,33261,158568,

%T 273272,3233049,4198630,11925232,21988970,27999430,130169954,

%U 133517598,560882701,1060718271,1158300012,1183752952,3652709607

%N Positions of incrementally largest terms in the continued fraction for Euler's constant gamma (A002852).

%C This sequence assumes nonstandard indexing of c.f. terms as [a_1; a_2, a_3, ...].

%C No other maximum term occurs in the first 4,851,382,841 terms of the c.f. - _Eric W. Weisstein_, Jul 22 2013

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Euler-MascheroniConstantContinuedFraction.html">Euler-Mascheroni Constant Continued Fraction</a>

%F a(n) = A224849(n) + 1.

%Y Cf. A224849 (= a(n) - 1).

%Y Cf. A002852 (continued fraction for Euler's constant).

%Y Cf. A033091 (values of incrementally largest terms in c.f.).

%Y Cf. A001620 (decimal expansion of Euler's constant).

%Y Cf. A098967.

%K nonn

%O 0,2

%A _Eric W. Weisstein_ and _Bill Gosper_

%E More terms from _Eric W. Weisstein_, Oct 25 2004

%E More terms from _Eric W. Weisstein_, Jan 02 2007

%E a(22) and a(23) from _Eric W. Weisstein_, Dec 09 2010

%E a(24) from _Eric W. Weisstein_, Sep 21 2011

%E a(25)-a(28) from _Eric W. Weisstein_, Jul 22 2013