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1 The first formula

Let ak(n) be the number of bracelets (turnover necklaces) of length n that have no reflection

symmetry and consist of k white beads and n − k black beads. Herbert Kociemba has proved

that, for fixed k ∈ Z>0, the generating function of the sequence (ak(n) : n ∈ Z>0) is given by

fk(x) =
∞∑
n=1

ak(n)xn =
xk

2

1

k

∑
m|k

φ(m)

(1− xm)k/m
− 1 + x

(1− x2)b
k
2
+1c

 , (1)

where φ(·) is Euler’s totient function. See, for example, the documentation of the following

sequences in the OEIS: A008804, A032246, A032247, A032248, A032249, and A032250.

Note that, unlike Bower [1] (in the documentation of the DHK transform), we trivially

assume that all bracelets of length 1 or 2 do have reflection symmetry. Thus, we trivially have

ak(1) = 0 = ak(2) for all k ∈ Z>0,

and this is reflected in Kociemba’s formula (1) above. This is because, for a bracelet with 1

bead, we may imagine an axis of symmetry passing through the single bead, while for a bracelet

of length 2, we may imagine an axis of symmetry passing through the two beads (assuming they

are placed diametrically opposite of each other on a circle). If a bracelet of length 2 has two

beads of identical color, we may also consider an axis of symmetry going between these two

beads (to the left and to the right of each one of them).

Let bk(n) be the number of aperiodic bracelets (turnover necklaces) of length n that have no

reflection symmetry and consist of k white beads and n− k black beads. Using the generating
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function fk(x) in Kocienba’s formula (1) above, we prove that, for fixed k ∈ Z>0, the generating

function of the sequence (bk(n) : n ∈ Z>0) is given by

gk(x) =

∞∑
n=1

bk(n)xn =
∑
d|k

µ(d) f k
d
(xd), (2)

where µ(·) is the Möbius function. In Section 2 of this note, we prove a more explicit formula

for gk(x) (see equation (5)).

Equation (2) can be established if we prove either one of the following two equivalent for-

mulas:

ak(n) =
∑

d| gcd(n,k)

b k
d

(n
d

)
and bk(n) =

∑
d| gcd(n,k)

µ(d) a k
d

(n
d

)
(k, n ∈ Z>0). (3)

(Note that ak(n) = 0 = bk(n) when 0 < n < k.)

Proof of equation (2) from equations (3): Using equations (3), we get

gk(x) =
∞∑
n=1

bk(n)xn =
∞∑
n=1

 ∑
d| gcd(n,k)

µ(d) a k
d

(n
d

)xn.

Letting m = n/d, we get

gk(x) =
∞∑

m=1

∑
d|k

µ(d) a k
d

(m)

xmd =
∑
d|k

µ(d)

( ∞∑
m=1

a k
d

(m)
(
xd
)m)

=
∑
k|d

µ(d) f k
d
(xd),

which establishes equation (2).

For each h ∈ Z>0, let ak(n;h) be the number of bracelets (turnover necklaces) of length n

and period h that have no reflection symmetry and consist of k white beads and n − k black

beads. Equations (3) can be established if we prove the following equalities:

ak(n; d) = b k
d

(n
d

)
for all n, k, d ∈ Z>0 with d| gcd(n, k). (4)

Proof of equations (3) from equations (4): It is sufficient to prove only the first one

of equations (3) (since the first one implies the second one). Note also that the period d of a

bracelet of length n that has no reflection symmetry and consists of k white beads and n−k black

beads should divide both n and k (and thus, n− k as well). It thus follows from equations (4)

that, for n, k ∈ Z>0,

ak(n) =
∑

d| gcd(n,k)

ak(n; d) =
∑

d| gcd(n,k)

b k
d

(n
d

)
.
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This establishes equations (3).

For d = 1, equations (4) are obvious. The most difficult part of this note is establishing

equations (4) when d ≥ 2. We essentially have to prove that, if a bracelet of length n/d with

k/d white beads and (n − k)/d black beads has a reflection symmetry, then a bracelet that

consists of d copies of this bracelet also has a reflection symmetry. We also have to prove the

converse: if a bracelet of length n and period d consists of k white beads and n− k black beads

and has a reflection property, then there is a contiguous part of it of length n/d that consists

of k/d white beads and (n − k)/d black beads, has a reflection property, and when repeated d

times produces the original bracelet.

Proof of equations (4): Assume d| gcd(n, k) and d ≥ 2. We consider two cases: (a) n/d

is odd, and (b) n/d is even.

Case (a): n/d is odd. If n/d = 1, then a bracelet of length n and period d = n consists

of n white beads and 0 black beads (i.e., k = d = n). Such a bracelet obviously has a reflection

property, and so does a bracelet of length n/d = 1 consisting of a bead of the same color as the

beads in the original bracelet. The converse is also true.

If n/d > 1, consider a bracelet of length n/d with k/d white beads and (n−k)/d black beads

that has reflection symmetry; say its beads are c1, . . . , cs, b, cs, . . . , c1, where s = (n/d)−1
2 . It

obviously has an axis of symmetry through b and the middle of the two beads c1. Now, suppose

we repeat it d times to create a bracelet of length n, which obviously would have k white beads

and n − k black beads. Starting from one copy, we name the copies (going in one direction)

1, 2, . . . , d.

If d is even, then the bracelet of length n has an axis of symmetry going through beads b of

copies 1 and d
2 + 1. It also has another axis of symmetry going between the two consecutive c1

beads of copies d and 1 and between the consecutive c1 beads of copies d
2 and d

2 + 1. (If d = 2,

then obviously d = d
2 + 1 and 1 = d

2 .) It thus has a reflection symmetry.

If d is odd ≥ 3, then the bracelet of length n has an axis of symmetry going through bead

b of copy 1 and through the middle of two (consecutive) beads c1 of copies d+1
2 and d+3

2 (and

thus, it has a reflection symmetry).

We may also consider the converse: start with a bracelet of length n (with n > d and n/d

odd) that has a reflection symmetry, has period d, and consists of k white beads and (n− k)/d

beads. We may prove (using a similar argument as above) that it can be generated by a bracelet

of length n/d that has a reflection symmetry and consists of k/d white beads and (n − k)/d

black beads. The proof of the converse is actually more complicated, but we omit the details.

(A complication in the proof of the converse arises from the fact that a bracelet with a reflection

3



property and an even number of beads may have more than one axes of symmetry.)

Case (b): n/d is even. Consider a bracelet of length n/d that has a reflection symmetry

and consists of k/d white beads and (n−k)/d black beads. Then its beats are either of the form

c1, . . . , cs, cs, . . . , c1, where s = n
2d (with an axis of symmetry going between the two cs beads

and between the two c1 beads, or of the form c1, . . . , cs−1, e1, cs−1, . . . , c1, e2, where s = n
2d − 1

(with an axis of symmetry going through beads e1 and e2).

Now consider a bracelet that consists of d copies of the bracelet of length n/d described

above. It obviously has length n and consists of k white beads and n− k black beads. Starting

from one copy, number the copies in one direction 1, 2, . . . , d.

If the bracelet of length n/d is of the form c1, . . . , cs, cs, . . . , c1, then the bracelet of length

n has an axis of symmetry going between the two consecutive cs beads of copy 1 and the two

consecutive cs beads of copy d
2 + 1 if d is even, or going between the two consecutive cs beads of

copy 1 and the two consecutive c1 beads of copies d+1
2 and d+3

2 if d is odd.

If the bracelet of length n/d is of the form c1, . . . , cs−1, e1, cs−1, . . . , c1, e2, then the bracelet

of length n has an axis of symmetry going through e1 of copy 1 and e1 of copy d
2 +1 (and another

one going through e2 of copy 1 and e2 of copy d
2 + 1) if d is even; or has an axis of symmetry

going through e1 in copy 1 and through e2 of copy d+1
2 if d is odd.

We may also consider the converse: start with a bracelet of length n (with n/d even) that

has a reflection symmetry, has period d, and consists of k white beads and (n− k)/d beads. We

may prove (using a similar argument as above) that it can be generated by a bracelet of length

n/d that has a reflection symmetry and consists of k/d white beads and (n− k)/d black beads.

Again, we omit the details.

Conclusion: Thus, given n, k, d ∈ Z>0 with d| gcd(n, k), we may establish a one-to-one

correspondence between the collection of bracelets of length n and period d which have k white

beads and n− k black beads and a reflection symmetry and the collection of aperiodic bracelets

of length n/d which have k/d white beads and (n−k)/d black beads and a reflection symmetry.

This proves that ak(n; d) = b k
d

(
n
d

)
.

2 The second formula

Using equations (1) and (2) from Section 1, we may establish another formula for the generating

function of the number of aperiodic bracelets of length n that have no reflection symmetry and

consist of k white beads and n− k black beads:

gk(x) =
∞∑
n=1

bk(n)xn =
xk

2k

∑
d|k

µ(d)

(
1

(1− xd)k/d
− k(1 + xd)

(1− x2d)b
k
2d

+1c

)
. (5)
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Proof of equation (5): Using equations (1) and (2), we get

gk(x) =
∑
d|k

µ(d) f k
d
(xd)

=
∑
d|k

µ(d)
(xd)

k
d

2

d
k

∑
m|(k/d)

φ(m)

(1− xdm)k/(dm)
− 1 + xd

(1− x2d)b
k
2d

+1c


=
xk

2k

∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− xdm)k/(dm)
− xk

2k

∑
d|k

µ(d)
k(1 + xd))

(1− x2d)b
k
2d

+1c .

To finish the proof of equation (5), we need to show that∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− xdm)k/(dm)
=
∑
d|k

µ(d)

(1− xd)k/d
. (6)

Using the associative property of Dirichlet convolutions, we get∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ydm/k)k/(dm)
=
∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ym/(k/d))(k/d)/m

=
∑
d|k

∑
m|d

mµ(m)φ

(
d

m

) 1

(1− yd/k)k/d
. (7)

We claim that ∑
m|d

mµ(m)φ

(
d

m

)
= µ(d) for all d ∈ Z>0. (8)

Indeed, it is well-known that

φ(d)

d
=
∑
m|d

µ(m)

m
for all d ∈ Z>0,

from which, by Möbius inversion, we get∑
m|d

µ(m)
φ(d/m)

d/m
=
µ(d)

d
for all d ∈ Z>0.

The last equality is equivalent to equation (8).

From equations (7) and (8) above, we get∑
d|k

dµ(d)
∑

m|(k/d)

φ(m)

(1− ydm/k)k/(dm)
=
∑
d|k

µ(d)

(1− yd/k)k/d
.

Letting y = xk in the above equation, we get equation (6), and this finishes the proof of

equation (5).
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3 Final remarks

It can be easily proved that, for k ∈ Z>0,

[ak(n) = bk(n) for all n ∈ Z>0]⇐⇒ [k ∈ {1, 4} or k is a positive prime].

We have

fk(x) = gk(x) = 0 for k ∈ {1, 2}; f4(x) = g4(x) =
x7

(1− x)4(1 + x)2(1 + x2)
;

and

fk(x) = gk(x) =
xk

2

(
1

k(1− x)k
+

k − 1

k(1− xk)
− (1 + x)

(1− x2)
k+1
2

)
for k odd prime ≥ 3.
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