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function (i.e., f(mimy) = f(m;)f(m,) for copfime
my,my) so a Dirichlet series &(s) is an appropriate
generating function. We find f(p") = 2 for a/prime
power p” (p = 1°tmod4), r > 1) and obtain
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This generating function is not only a succinct way of
representing the statistics of CSL indices, it is also a
powerful tool for determining their asymptotic prop-
erties [11]. For example, we have used it to show that
the number of CSL rotations of Z? with index < X
is asymptotically 4X /m. The possible CSL indices
are precisely the numbers m with all prime factors
= 1 (mod4) and we have f(m) = 2%, where a is the
number of distinct prime divisors of m. Each CSL is
itself a square lattice, with the index as the area of its
fundamental domain.

1.2. Coincidence rotations for sixfold symmetry

Before treating twelvefold symmetry (the main aim
of Part 1 of this article) we look at sixfold symmetry.
The triangular (or hexagonal) lattice consists of all
integral linear combinations of the two vectors e;
and l(e; + v3ey). It is (up to a scale factor v/2)
the root lattice A, [15]. A rotated copy R A, with
R € SO(2) results in a CSL of finite index if and
only if cos(¢) € Q and sin(p) € v/3 Q. This defines
SOC(A;) as a subgroup of SO(2, Q(v/3)). To further
describe SOC(A;) we notice that A, can be written
as

%Ag:{m+n9|m,n€Z}=Z[Q] 8

with ¢ = 1(1 + 4v/3). The lattice A,/v/2 is there-
fore the ring of integers of the imaginary quadratic
field Q(v/=3), the so-called Eisenstein (or Eisenstein-
Jacobi) integers [14]. It has a finite group of units iso-
morphic to Cs (namely, ¢ and its powers) and unique
prime factorization up to units.
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A rotation R(p) € SOC(A;) corresponds to multi-
plication by a complex number e*# € Q(/=3). That
number can be written as e’? = o/ witha, 8 € Z[p)
coprime and of equal norm. As a consequence of the
unique factorization one can again show [11] that ev-
ery coincidence rotation can be factorized, this time
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where n, € Z (only finitely many of them # 0), ¢
is a unit in Z[g] (a power of p), p runs through the
rational primes congruent to 1 (mod 3) and the w,,, @,
are the (complex conjugate) Eisenstein prime factors
of p (i.e., wpw, = p). We thus have

SOC(4;) = {R € SO(2) | cos(yp) € Q,
sin(p) € V3Q} (10)
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with generators ¢ for Cs and w, /@, with p = 1 (3)
for the infinite cyclic groups.

As in the previous example, the coincidence index
is 1 for the units and p for the other generators, so for
a rotation R(yp) factorized as in (9), we have
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The first three generators with X > 1, normalized
to have denominator X' (a prime = 1 (mod 3)) and
argument in (0, v /6), are
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Finally, if 6 f(m) denotes the number of CSL rota-

tions of index m, f(m) is multiplicative and one finds
the Dirichlet series generating function [11]
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The possible coincidence indices are precisely the
numbers m with all prime factors = 1 (mod 3) and/
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