login
Expansion of eta(q^9)*eta(q^15).
6

%I #24 Jan 09 2023 06:08:08

%S 0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,

%T 0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0

%N Expansion of eta(q^9)*eta(q^15).

%H Seiichi Manyama, <a href="/A030215/b030215.txt">Table of n, a(n) for n = 0..10000</a>

%H M. Koike, <a href="http://projecteuclid.org/euclid.nmj/1118787564">On McKay's conjecture</a>, Nagoya Math. J., 95 (1984), 85-89.

%F Expansion of x * Product_{k>=1} (1 - x^(9*k)) * (1 - x^(15*k)). - _Seiichi Manyama_, Oct 18 2016

%t eta = QPochhammer;

%t CoefficientList[q eta[q^9] eta[q^15] + O[q]^100, q] (* _Jean-François Alcover_, Feb 21 2021 *)

%Y Cf. Expansion of eta(q^k)*eta(q^(24 - k)): A030199 (k=1), A030201 (k=3), A030213 (k=5), A030214 (k=7), this sequence (k=9), A030216 (k=10), A030217 (k=11).

%K sign

%O 0,95

%A _N. J. A. Sloane_.