login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030063 Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a square. 9

%I #46 Apr 03 2022 09:56:40

%S 0,1,3,8,120

%N Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a square.

%C Baker and Davenport proved that no other positive integer can replace 120 and still preserve the property that 1 + the product of any two distinct terms is a square. In particular, the sequence cannot be extended to another integer term. However, it can be extended to another rational term - see A192629. - _Jonathan Sondow_, Jul 11 2011

%C It is conjectured that there do not exist five strictly positive integers with the property that 1 + the product of any two distinct terms is a square. (See Dujella's links.) - _Jonathan Sondow_, Apr 04 2013

%C Other such quadruples can be generated using the formula F(2n), F(2n + 2), F(2n + 4) and F(2n + 1)F(2n + 2)F(2n + 3) given in Koshy's book. - _Alonso del Arte_, Jan 18 2011

%C Other such quadruples are generated by Euler's formula a, b, a+b+2*r, 4*r*(r+a)*(r+b), where 1+a*b = r^2.

%C Seems to be equivalent to: 1 + the product of any two distinct terms is a perfect power. Tested up to 10^10. - _Robert C. Lyons_, Jun 30 2016

%C Seems to be equivalent to: 1 + the product of any two distinct terms is a powerful number. Tested up to 1.2*10^9. - _Robert C. Lyons_, Jun 30 2016

%D M. Gardner, "Mathematical Magic Show", M. Gardner, Alfred Knopf, New York, 1977, pp. 210, 221-222.

%D Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001, pp. 93-94.

%H A. Baker and H. Davenport, <a href="http://dx.doi.org/10.1093/qmath/20.1.129">The Equations 3x^2-2=y^2 and 8x^2-7=z^2</a>, Quart. J. Math. Oxford 20 (1969).

%H Nicolae Ciprian Bonciocat, Mihai Cipu, and Maurice Mignotte, <a href="https://arxiv.org/abs/2010.09200">There is no Diophantine D(-1)--quadruple</a>, arXiv:2010.09200 [math.NT], 2020.

%H Andrej Dujella, <a href="https://web.math.pmf.unizg.hr/~duje/dtuples.html">Diophantine m-tuples</a>

%H Z. Franusic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Franusic/franusic4.html">On the Extension of the Diophantine Pair {1,3} in Z[surd d]</a>, J. Int. Seq. 13 (2010) # 10.9.6

%H Zrinka Franušić, <a href="http://atlas-conferences.com/cgi-bin/abstract/cbbv-23">On the extension of the Diophantine pair {1, 3} in Z[√d]</a>, Journées Arithmétiques 2011. [Dead link]

%H Yasutsugu Fujita, <a href="http://dx.doi.org/10.1016/j.jnt.2009.01.001">Any Diophantine quintuple contains a regular Diophantine quadruple</a>, Journal of Number Theory, Volume 129, Issue 7, July 2009, Pages 1678-1697.

%H Martin Gardner, Mathematical diversions, Scientific American 216 (1967), <a href="https://www.jstor.org/stable/24931439">March 1967</a>, p. 124; <a href="https://www.jstor.org/stable/24931474">April 1967</a>, p. 119.

%Y Cf. A192629, A192630, A192631, A192632.

%K nonn,fini,full,nice

%O 0,3

%A Graham Lewis (grahaml(AT)levygee.com.uk)

%E Definition clarified by _Jonathan Sondow_, Jul 06 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)