login
Third derivative of Catalan generating function/3!.
2

%I #18 Mar 22 2022 05:53:59

%S 5,56,420,2640,15015,80080,408408,2015520,9699690,45762640,212469400,

%T 973496160,4411154475,19800295200,88158457200,389753179200,

%U 1712478031110,7483097278800,32540135136600,140883148005600,607558575774150,2610765994183776,11182476723339600

%N Third derivative of Catalan generating function/3!.

%H Andrew Howroyd, <a href="/A030060/b030060.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = (2*(n+3))!/(3!*n!*(n+4)!) = (n+1)*(n+2)*(n+3)*C(n+3)/6, C(n): Catalan numbers.

%F From _Amiram Eldar_, Mar 22 2022: (Start)

%F Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi - 5)/2.

%F Sum_{n>=0} (-1)^n/a(n) = 9*sqrt(5)*log(phi) - 19/2, where phi is the golden ratio (A001622). (End)

%t Array[CatalanNumber[#] Binomial[#, 3] &, 19, 3] (* _Michael De Vlieger_, Dec 17 2017 *)

%o (MuPAD) combinat::catalan(n) *binomial(n,3) $ n = 3..21 // _Zerinvary Lajos_, Feb 15 2007

%o (PARI) a(n) = (2*(n+3))!/(3!*n!*(n+4)!) \\ _Andrew Howroyd_, Dec 17 2017

%Y Cf. A000108, A001622.

%K nonn

%O 0,1

%A _Wolfdieter Lang_