login
Smallest power of 2 whose decimal expansion contains n.
17

%I #32 Apr 03 2024 10:06:56

%S 1024,1,2,32,4,256,16,32768,8,4096,1024,1099511627776,128,131072,

%T 262144,2097152,16,134217728,1073741824,8192,2048,262144,

%U 8796093022208,2199023255552,1024,256,262144,32768,128,4294967296,4194304,131072,32,33554432,134217728,33554432

%N Smallest power of 2 whose decimal expansion contains n.

%H Reinhard Zumkeller, <a href="/A030001/b030001.txt">Table of n, a(n) for n = 0..10000</a>

%t a[n_] := (k = 0; While[ !MatchQ[ IntegerDigits[2^k], {___, Sequence @@ IntegerDigits[n], ___}], k++]; 2^k); Table[a[n], {n, 1, 30}](* _Jean-François Alcover_, Nov 30 2011 *)

%t Module[{p2=2^Range[0,50]},Table[SelectFirst[p2,SequenceCount[ IntegerDigits[ #], IntegerDigits[ n]]>0&],{n,0,40}]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 13 2019 *)

%o (Haskell)

%o import Data.List (isInfixOf)

%o a030001 n = head $ filter ((show n `isInfixOf`) . show) a000079_list

%o -- _Reinhard Zumkeller_, Nov 02 2011

%o (Python)

%o def a(n):

%o k, strn = 0, str(n)

%o while strn not in str(2**k): k += 1

%o return 2**k

%o print([a(n) for n in range(36)]) # _Michael S. Branicky_, Apr 03 2024

%Y Cf. A030000 (the exponents), A000079.

%K nonn,base,nice,look

%O 0,1

%A _N. J. A. Sloane_

%E a(30) corrected by _Reinhard Zumkeller_, Nov 02 2011

%E a(0) added by _N. J. A. Sloane_, Jul 04 2017