%I #15 May 21 2013 11:15:00
%S 1705,7015,31369,53599,77809,215635,244885,248239,346801,568879,
%T 662935,898105,2151769,2240515,2782579,9480829,10665265,11219485,
%U 13644085,13929205,16549579,17782879,21592289,29354329,30075565,35448439,39792379
%N QuasiCarmichael numbers to base 4: squarefree composites n such that (n,2*3) = 1 and prime pn ==> p4n4.
%C If multiples of 2 and 3 are not excluded, then terms like 6, 10, 15, 30, 70, 130, 165,... belong to the sequence.  _Giovanni Resta_, May 21 2013
%H Giovanni Resta, <a href="/A029559/b029559.txt">Table of n, a(n) for n = 1..372</a> (terms < 10^12)
%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers.</a>
%t qcm[n_, d_] := Block[{p, e}, {p, e} = Transpose@FactorInteger@n; Length[p] > 1 && Max[e] == 1 && d < Min[p] && And @@ IntegerQ /@ ((n  d)/(p  d))]; Select[Range[10^6], qcm[#, 4] &] (* _Giovanni Resta_, May 21 2013 *)
%K nonn
%O 1,1
%A _David W. Wilson_
