login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^12)).
0

%I #8 Sep 04 2022 21:53:22

%S 1,0,0,0,0,0,1,0,1,1,0,0,2,0,1,1,1,1,3,0,2,2,1,1,5,1,3,3,2,2,6,1,5,5,

%T 3,3,9,2,6,6,5,5,11,3,9,9,6,6,15,5,11,11,9,9,18,6,15,15,11,11,23,9,18,

%U 18,15,15,27,11,23,23,18,18

%N Expansion of 1/((1-x^6)(1-x^8)(1-x^9)(1-x^12)).

%H <a href="/index/Rec#order_35">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, -1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, -1).

%F G.f.: 1/((1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)).

%F a(n) = a(n-6) + a(n-8) + a(n-9) + a(n-12) - a(n-14) - a(n-15) - a(n-17) - a(n-18) - a(n-20) - a(n-21) + a(n-23) + a(n-26) + a(n-27) + a(n-29) - a(n-35). - _Wesley Ivan Hurt_, Sep 04 2022

%t CoefficientList[Series[1/((1-x^6)(1-x^8)(1-x^9)(1-x^12)), {x, 0, 100}], x] (* _Jinyuan Wang_, Mar 11 2020 *)

%K nonn,easy

%O 0,13

%A _N. J. A. Sloane_