login
Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^11)).
1

%I #10 Mar 12 2020 07:33:44

%S 1,0,0,1,1,0,1,1,1,2,1,2,3,2,2,4,3,3,5,4,5,6,6,6,8,7,8,10,9,10,12,12,

%T 12,15,14,15,18,17,18,21,21,21,25,24,26,29,28,30,34,33,34,39,38,40,44,

%U 44,46,50,50,52,57,56,59,64

%N Expansion of 1/((1-x^3)(1-x^4)(1-x^9)(1-x^11)).

%C Number of partitions of n into parts 3, 4, 9, and 11. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029267/b029267.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_27">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,0,0,-1,0,1,0,1,-1,-1,-1,-1,1,0,1,0,-1,0,0,1,1,0,0,-1).

%t CoefficientList[Series[1/((1 - x^3) (1 - x^4) (1 - x^9) (1 - x^11)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 03 2014 *)

%o (PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^9)*(1-x^11)) + O(x^80)) \\ _Jinyuan Wang_, Mar 12 2020

%K nonn,easy

%O 0,10

%A _N. J. A. Sloane_