login
Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^9)).
1

%I #13 Mar 12 2020 22:20:40

%S 1,0,0,1,1,1,1,1,2,3,2,2,4,4,4,5,5,6,8,7,8,10,10,11,13,13,14,17,17,18,

%T 21,21,23,26,26,28,32,32,34,38,39,41,45,46,49,54,54,57,63,64,67,72,74,

%U 78,84,85,89,96,98,102,109

%N Expansion of 1/((1-x^3)(1-x^4)(1-x^5)(1-x^9)).

%C Number of partitions of n into parts 3, 4, 5, and 9. - _Vincenzo Librandi_, Jun 03 2014

%H Vincenzo Librandi, <a href="/A029247/b029247.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,1,1,0,-1,-1,0,0,0,0,-1,-1,0,1,1,1,0,0,-1).

%t CoefficientList[Series[1/((1 - x^3) (1 - x^4) (1 - x^5) (1 - x^9)), {x, 0, 60}], x] (* _Harvey P. Dale_, Jul 11 2011 *)

%o (PARI) Vec(1/((1-x^3)*(1-x^4)*(1-x^5)*(1-x^9)) + O(x^80)) \\ _Jinyuan Wang_, Mar 12 2020

%K nonn,easy

%O 0,9

%A _N. J. A. Sloane_