%I
%S 1,0,1,0,1,0,1,1,1,1,2,1,3,1,4,1,4,2,4,3,5,4,6,4,8,4,9,5,10,6,11,8,12,
%T 9,14,10,16,11,18,12,20,14,22,16,24,18,26,20,29,22,32,24,35,26,38,29,
%U 41,32,44,35,48,38,52,41,56
%N Expansion of 1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^12)).
%C Number of partitions of n into parts 2, 7, 10, and 12. - _Vincenzo Librandi_, Jun 03 2014
%H Vincenzo Librandi, <a href="/A029234/b029234.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, 0, 0, 0, 1, 0, -1).
%t CoefficientList[Series[1/((1 - x^2) (1 - x^7) (1 - x^10) (1 - x^12)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 03 2014 *)
%o (PARI) Vec(1/((1-x^2)*(1-x^7)*(1-x^10)*(1-x^12)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020
%K nonn,easy
%O 0,11
%A _N. J. A. Sloane_
|