login
Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)).
1

%I #11 Mar 15 2020 21:20:57

%S 1,0,1,0,1,1,1,2,1,2,3,2,4,2,5,4,5,6,5,7,8,8,10,8,12,11,13,14,14,16,

%T 18,18,21,19,24,24,26,28,28,31,34,34,39,36,43,43,46,49,49,54,57,58,64,

%U 61,70,70,75,78,79,85,89,91

%N Expansion of 1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)).

%C Number of partitions of n into parts 2, 5, 7, and 10. - _Joerg Arndt_, Jun 02 2014

%H Vincenzo Librandi, <a href="/A029201/b029201.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,0,0,0,-1,1,0,-2,0,1,-1,0,0,0,1,0,0,1,0,-1).

%t CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^7) (1 - x^10)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jun 02 2014 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^5)*(1-x^7)*(1-x^10)) + O(x^80)) \\ _Jinyuan Wang_, Mar 15 2020

%K nonn,easy

%O 0,8

%A _N. J. A. Sloane_