login
Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^10)).
1

%I #16 Sep 08 2022 08:44:50

%S 1,0,1,1,1,1,2,1,2,3,3,3,5,4,5,6,6,6,9,8,10,11,12,12,15,14,16,18,19,

%T 20,24,23,26,28,29,30,35,34,38,41,43,44,50,49,53,57,59,61,68,68,73,77,

%U 80,82,90,90,96,101,105,108

%N Expansion of 1/((1-x^2)(1-x^3)(1-x^9)(1-x^10)).

%H Vincenzo Librandi, <a href="/A029165/b029165.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,1,0,-1,0,0,0,1,1,-1,-2,-1,1,1,0,0,0,-1,0,1,1,0,-1).

%t CoefficientList[Series[1/((1 - x^2) (1 - x^3) (1 - x^9) (1 - x^10)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Jan 22 2017 *)

%o (PARI) Vec(1/((1-x^2)*(1-x^3)*(1-x^9)*(1-x^10)) + O(x^90)) \\ _Michel Marcus_, Jan 22 2017

%o (Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R! 1/((1-x^2)*(1-x^3)*(1-x^9)*(1-x^10))); // _Vincenzo Librandi_, Jan 22 2017

%K nonn,easy

%O 0,7

%A _N. J. A. Sloane_