|
|
A029126
|
|
Expansion of 1/((1-x)(1-x^7)(1-x^11)(1-x^12)).
|
|
0
|
|
|
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 5, 5, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 18, 20, 21, 23, 25, 26, 27, 28, 30, 31, 33, 35, 37, 39, 41, 44, 46, 48, 50, 52, 54, 56, 59, 62, 65, 68, 71, 74, 77, 80
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Table of n, a(n) for n=0..61.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1).
|
|
FORMULA
|
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=2, a(8)=2, a(9)=2, a(10)=2, a(11)=3, a(12)=4, a(13)=4, a(14)=5, a(15)=5, a(16)=5, a(17)=5, a(18)=6, a(19)=7, a(20)=7, a(21)=8, a(22)=9, a(23)=10, a(24)=11, a(25)=12, a(26)=13, a(27)=13, a(28)=14, a(29)=15, a(30)=16, a(n) = a(n-1) + a(n-7) - a(n-8) + a(n-11) - a(n-13) - a(n-18) + a(n-20) - a(n-23) + a(n-24) + a(n-30) - a(n-31). - Harvey P. Dale, Mar 10 2015
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x)(1-x^7)(1-x^11)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 10 2015 *)
|
|
PROG
|
(PARI) Vec(1/((1-x)*(1-x^7)*(1-x^11)*(1-x^12)) + O(x^99)) \\ Jinyuan Wang, Mar 18 2020
|
|
CROSSREFS
|
Sequence in context: A029082 A035450 A234537 * A269850 A036054 A029102
Adjacent sequences: A029123 A029124 A029125 * A029127 A029128 A029129
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|