login
Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).
1

%I #15 May 24 2017 02:35:50

%S 1,1,1,1,1,2,2,3,3,3,4,4,6,6,7,8,8,10,10,12,13,14,16,16,19,20,22,24,

%T 25,28,29,32,34,36,39,41,45,47,50,53,56,60,63,67,70,74,78,82,87,91,96,

%U 100,105,110,115,121,126,132

%N Expansion of 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).

%C Number of partitions of n into parts 1, 5, 7 and 12. - _Ilya Gutkovskiy_, May 21 2017

%H Vincenzo Librandi, <a href="/A029095/b029095.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1,1,-1,0,0,0,0,0,0,0,0,-1,1,-1,1,0,0,0,1,-1).

%F G.f.: 1/((1-x)*(1-x^5)*(1-x^7)*(1-x^12)).

%t CoefficientList[Series[1/((1 - x) (1 - x^5) (1 - x^7) (1 - x^12)), {x, 0, 80}], x] (* _Vincenzo Librandi_, May 24 2017 *)

%Y Cf. A025886 (first differences). [_R. J. Mathar_, Oct 23 2008]

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_.