login
Expansion of 1/((1-x)(1-x^4)(1-x^11)(1-x^12)).
1

%I #11 May 20 2017 10:22:48

%S 1,1,1,1,2,2,2,2,3,3,3,4,6,6,6,7,9,9,9,10,12,12,13,15,18,18,19,21,24,

%T 24,25,27,30,31,33,36,40,41,43,46,50,51,53,56,61,63,66,70,76,78,81,85,

%U 91,93,96,101,108,111,115,121

%N Expansion of 1/((1-x)(1-x^4)(1-x^11)(1-x^12)).

%C Number of partitions of n into parts 1, 4, 11 and 12. - _Ilya Gutkovskiy_, May 19 2017

%H Indranil Ghosh, <a href="/A029084/b029084.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1,0,0,0,0,0,1,0,-1,0,-1,0,1,0,0,0,0,0,-1,1,0,0,1,-1).

%t CoefficientList[Series[1/((1 - x)(1 - x^4)(1 - x^11)(1 - x^12)), {x, 0, 100}], x] (* _Indranil Ghosh_, May 20 2017 *)

%o (PARI) Vec(1/((1-x)*(1-x^4)*(1-x^11)*(1-x^12)) + O(x^80)) \\ _Michel Marcus_, May 20 2017

%K nonn

%O 0,5

%A _N. J. A. Sloane_.