login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028368 a(n) = (Product_{j=1..n-1} (2^j-1)) * 2^binomial(n+1,2). 0

%I

%S 1,2,8,192,21504,10321920,20478689280,165140150353920,

%T 5369036568306647040,700981414358115837542400,

%U 366798338802685125615786393600,768480666818860817418136536376934400

%N a(n) = (Product_{j=1..n-1} (2^j-1)) * 2^binomial(n+1,2).

%H I. Strazdins, <a href="https://doi.org/10.1023/A:1005769927571">Universal affine classification of Boolean functions</a>, Acta Applic. Math. 46 (1997), 147-167.

%F a(n) ~ c * 2^(n^2), where c = A048651 = 0.288788095... - _Vaclav Kotesovec_, Oct 27 2017

%t Table[Product[2^j - 1, {j, 1, n-1}] * 2^(n*(n+1)/2), {n, 0, 12}] (* _Vaclav Kotesovec_, Oct 27 2017 *)

%Y Cf. A005329.

%K nonn

%O 0,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 17:19 EDT 2021. Contains 347564 sequences. (Running on oeis4.)