%I #20 Jul 05 2024 14:04:36
%S 1,25,404,5390,64791,731595,7939714,83955520,872430581,8959286765,
%T 91262059824,924426748050,9327520083571,93861018423535,
%U 942726158964734,9456149685174980,94764094925599761,949061042927869905,9500560621143838444,95075305236466788310,951241183953215635151
%N Expansion of 1/((1-3x)(1-5x)(1-7x)(1-10x)).
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (25,-221,815,-1050).
%F a(n) = (8*10^(n+3)-5*7^(n+4)+42*5^(n+3)-5*3^(n+4))/840. - _Yahia Kahloune_, Jun 08 2013
%t CoefficientList[Series[1/((1-3x)(1-5x)(1-7x)(1-10x)),{x,0,20}],x] (* _Harvey P. Dale_, Jan 29 2020 *)
%t Table[(8 10^(n + 3) - 5 7^(n + 4) + 42 5^(n + 3) - 5 3^(n + 4)) / 840, {n, 0, 40}] (* _Vincenzo Librandi_, Jan 30 2020 *)
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/((1-3*x)*(1-5*x)*(1-7*x)*(1-10*x)))); // _Vincenzo Librandi_, Jan 30 2020
%o (PARI) a(n)=(8*10^(n+3)-5*7^(n+4)+42*5^(n+3)-5*3^(n+4))/840 \\ _Charles R Greathouse IV_, Jul 05 2024
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_.
|