%I #12 Jul 30 2015 22:48:27
%S 1,26,445,6410,84781,1071986,13229485,161139770,1948959661,
%T 23484063746,282412377325,3392692006730,40735374508141,
%U 488965966028306,5868455675537965,70426728878067290,845152692571634221
%N Expansion of 1/((1-3x)(1-5x)(1-6x)(1-12x)).
%H Harvey P. Dale, <a href="/A028058/b028058.txt">Table of n, a(n) for n = 0..900</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (26, -231, 846, -1080).
%F a(0)=1, a(1)=26, a(2)=445, a(3)=6410, a(n)=26*a(n-1)-231*a(n-2)+ 846*a(n-3)- 1080*a(n-4). - _Harvey P. Dale_, Dec 06 2012
%F a(n)=(2*12^(n+3)-42*6^(n+3)+54*5^(n+3)-14*3^(n+3))/756. [_Yahia Kahloune_, Jun 08 2013]
%t CoefficientList[Series[1/((1-3x)(1-5x)(1-6x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{26,-231,846,-1080},{1,26,445,6410},30] (* _Harvey P. Dale_, Dec 06 2012 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_.
|