login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027974 a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960. 7
1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414, 1070731475, 2142612801 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = 8*2^n - Fibonacci(n+5) - Fibonacci(n+3).
a(n) = A101220(4, 2, n+1).
G.f.: (1+2*x)/((1-2*x)*(1-x-x^2)). - R. J. Mathar, Sep 22 2008
MAPLE
with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
MATHEMATICA
Table[2^(n+3) - LucasL[n+4], {n, 0, 30}] (* G. C. Greubel, Sep 26 2019 *)
PROG
(PARI) vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
(Magma) [2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
(Sage) [2^(n+3) - lucas_number2(n+4, 1, -1) for n in (0..30)] # G. C. Greubel, Sep 26 2019
(GAP) List([0..30], n-> 2^(n+3) - Lucas(1, -1, n+4)[2]); # G. C. Greubel, Sep 26 2019
CROSSREFS
Sequence in context: A335651 A066767 A227200 * A027983 A142585 A332743
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 03:08 EDT 2024. Contains 375770 sequences. (Running on oeis4.)