|
|
A027974
|
|
a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960.
|
|
7
|
|
|
1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414, 1070731475, 2142612801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 8*2^n - Fibonacci(n+5) - Fibonacci(n+3).
G.f.: (1+2*x)/((1-2*x)*(1-x-x^2)). - R. J. Mathar, Sep 22 2008
|
|
MAPLE
|
with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
|
|
MATHEMATICA
|
Table[2^(n+3) - LucasL[n+4], {n, 0, 30}] (* G. C. Greubel, Sep 26 2019 *)
|
|
PROG
|
(PARI) vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
(Magma) [2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
(Sage) [2^(n+3) - lucas_number2(n+4, 1, -1) for n in (0..30)] # G. C. Greubel, Sep 26 2019
(GAP) List([0..30], n-> 2^(n+3) - Lucas(1, -1, n+4)[2]); # G. C. Greubel, Sep 26 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|