The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027560 Number of 5-balanced strings of length n: let d(S)= #(1)'s in S - #(0)'s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=5. 1

%I #14 Jul 30 2015 22:41:36

%S 1,2,4,8,16,32,62,122,232,450,846,1622,3026,5748,10664,20106,37144,

%T 69608,128164,238984,438826,814874,1492908,2762562,5051602,9320014,

%U 17014950,31311964,57084732,104819474,190865620,349797128,636274832

%N Number of 5-balanced strings of length n: let d(S)= #(1)'s in S - #(0)'s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=5.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 5, -4, -6, 3).

%F a_n = a_{n-1} + 5a_{n-2} - 4a_{n-3} - 6a_{n-4} + 3a_{n-5}.

%F G.f. (1+x-3x^2-2x^3+2x^4-x^5) / (1-x-2x^2+x^3)(1-3x^2). - _David Callan_, Jul 22 2008

%t Join[{1},LinearRecurrence[{1,5,-4,-6,3},{2,4,8,16,32},40]] (* _Harvey P. Dale_, May 01 2013 *)

%K nonn

%O 0,2

%A _R. K. Guy_, _David Callan_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 15:58 EDT 2024. Contains 375753 sequences. (Running on oeis4.)