login
a(n) = n^4 + n^3 + n^2 + n^1.
10

%I #27 Oct 21 2022 21:04:02

%S 0,4,30,120,340,780,1554,2800,4680,7380,11110,16104,22620,30940,41370,

%T 54240,69904,88740,111150,137560,168420,204204,245410,292560,346200,

%U 406900,475254,551880,637420,732540,837930,954304,1082400,1222980,1376830,1544760,1727604

%N a(n) = n^4 + n^3 + n^2 + n^1.

%C a(A047203(n)) mod 10 = 0; a(A016861(n)) mod 10 = 4. - _Reinhard Zumkeller_, Oct 23 2006

%H Vincenzo Librandi, <a href="/A027445/b027445.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -5, 1).

%p seq(n^4+n^3+n^2+n,n=0..50); # _Muniru A Asiru_, Jul 15 2018

%t lst={};Do[AppendTo[lst, n^4+n^3+n^2+n], {n, 0, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 20 2008 *)

%t Table[Total[n^Range[4]],{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,4,30,120,340},40] (* _Harvey P. Dale_, Jul 01 2017 *)

%o (Magma) [n^4 + n^3 + n^2 + n^1: n in [0..50]]; // _Vincenzo Librandi_, Jun 09 2011

%o (GAP) List([0..50],n->n^4+n^3+n^2+n); # _Muniru A Asiru_, Jul 15 2018

%o (PARI) a(n)=n^4+n^3+n^2+n^1 \\ _Charles R Greathouse IV_, Oct 21 2022

%Y Equals 2 * A071237(n).

%Y Column k=4 of A228275.

%K nonn,easy

%O 0,2

%A _Patrick De Geest_