login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026820 Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts. 40

%I #116 Sep 02 2023 18:53:35

%S 1,1,2,1,2,3,1,3,4,5,1,3,5,6,7,1,4,7,9,10,11,1,4,8,11,13,14,15,1,5,10,

%T 15,18,20,21,22,1,5,12,18,23,26,28,29,30,1,6,14,23,30,35,38,40,41,42,

%U 1,6,16,27,37,44,49,52,54,55,56,1,7,19,34,47,58,65,70,73,75,76,77

%N Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts.

%D G. Chrystal, Algebra, Vol. II, p. 558.

%D D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

%H Alois P. Heinz, Robert G. Wilson v, <a href="/A026820/b026820.txt">Rows n = 1..141, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 831. [scanned copy]

%H L. Euler, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k69587/f335.item">Introductio in Analysin Infinitorum</a>, Book I, chapter XVI.

%H T. S. Motzkin, <a href="/A000262/a000262.pdf">Sorting numbers for cylinders and other classification numbers</a>, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]

%H OEIS Wiki, <a href="http://oeis.org/wiki/Sorting_numbers">Sorting numbers</a>.

%H R. Sulzgruber, <a href="https://othes.univie.ac.at/30616/">The Symmetry of the q,t-Catalan Numbers</a>, Masterarbeit, Univ. Wien, 2013.

%H Sergei Viznyuk, <a href="http://phystech.com/ftp/A026820.c">C program</a>.

%H Sergei Viznyuk, <a href="/A026820/a026820.c.txt">Local copy of C program</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PartitionFunctionq.html">Partition Function q</a>.

%H <a href="/index/Par#partN">Index entries for sequences related to partitions</a> - _Reinhard Zumkeller_, Jan 21 2010

%F T(T(n,n),n) = A134737(n). - _Reinhard Zumkeller_, Nov 07 2007

%F T(A000217(n),n) = A173519(n). - _Reinhard Zumkeller_, Feb 20 2010

%F T(n,k) = T(n,k-1) + T(n-k,k). - _Thomas Dybdahl Ahle_, Jun 13 2011

%F T(n,k) = Sum_{i=1..min(k,floor(n/2))} T(n-i,i) + Sum_{j=1+floor(n/2)..k} A000041(n-j). - _Bob Selcoe_, Aug 22 2014 [corrected by _Álvar Ibeas_, Mar 15 2018]

%F O.g.f.: Product_{i>=0} 1/(1-y*x^i). - _Geoffrey Critzer_, Mar 11 2012

%F T(n,k) = A008284(n+k,k). - _Álvar Ibeas_, Jan 06 2015

%e Triangle starts:

%e 1;

%e 1, 2;

%e 1, 2, 3;

%e 1, 3, 4, 5;

%e 1, 3, 5, 6, 7;

%e 1, 4, 7, 9, 10, 11;

%e 1, 4, 8, 11, 13, 14, 15;

%e 1, 5, 10, 15, 18, 20, 21, 22;

%e 1, 5, 12, 18, 23, 26, 28, 29, 30;

%e 1, 6, 14, 23, 30, 35, 38, 40, 41, 42;

%e 1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56;

%e ...

%p T:= proc(n, k) option remember;

%p `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))

%p end:

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Apr 21 2012

%t t[n_, k_] := Length@ IntegerPartitions[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten

%t (* Second program: *)

%t T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 22 2015, after _Alois P. Heinz_ *)

%o (Haskell)

%o import Data.List (inits)

%o a026820 n k = a026820_tabl !! (n-1) !! (k-1)

%o a026820_row n = a026820_tabl !! (n-1)

%o a026820_tabl = zipWith

%o (\x -> map (p x) . tail . inits) [1..] $ tail $ inits [1..] where

%o p 0 _ = 1

%o p _ [] = 0

%o p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks

%o -- _Reinhard Zumkeller_, Dec 18 2013

%o (PARI) T(n,k)=my(s); forpart(v=n,s++,,k); s \\ _Charles R Greathouse IV_, Feb 27 2018

%o (SageMath)

%o from sage.combinat.partition import number_of_partitions_length

%o from itertools import accumulate

%o for n in (1..11):

%o print(list(accumulate([number_of_partitions_length(n, k) for k in (1..n)])))

%o # _Peter Luschny_, Jul 28 2022

%Y Partial sums of rows of A008284, row sums give A058397, central terms give A171985, mirror is A058400.

%Y T(n,n) = A000041(n), T(n,1) = A000012(n), T(n,2) = A008619(n) for n>1, T(n,3) = A001399(n) for n>2, T(n,4) = A001400(n) for n>3, T(n,5) = A001401(n) for n>4, T(n,6) = A001402(n) for n>5, T(n,7) = A008636(n) for n>6, T(n,8) = A008637(n) for n>7, T(n,9) = A008638(n) for n>8, T(n,10) = A008639(n) for n>9, T(n,11) = A008640(n) for n>10, T(n,12) = A008641(n) for n>11, T(n,n-2) = A007042(n-1) for n>2, T(n,n-1) = A000065(n) for n>1.

%Y Cf. A008284, A026840, A134737, A173519.

%K nonn,tabl,nice

%O 1,3

%A _Clark Kimberling_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 11:29 EDT 2024. Contains 371779 sequences. (Running on oeis4.)