login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{i=0..n} Sum_{j=0..n} A026626(i,j).
17

%I #21 Jan 01 2025 09:53:32

%S 1,3,8,18,40,84,174,354,716,1440,2890,5790,11592,23196,46406,92826,

%T 185668,371352,742722,1485462,2970944,5941908,11883838,23767698,

%U 47535420,95070864,190141754,380283534,760567096,1521134220,3042268470,6084536970,12169073972

%N a(n) = Sum_{i=0..n} Sum_{j=0..n} A026626(i,j).

%H Colin Barker, <a href="/A026635/b026635.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-3,2).

%F G.f.: (1+x^4)/((1-x)*(1-2*x)*(1-x^2)). - _Ralf Stephan_, Apr 30 2004

%F From _Colin Barker_, Sep 29 2017: (Start)

%F a(n) = (17*2^n - 6*n - 9 + (-1)^n)/6 for n>0.

%F a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4) for n>4. (End)

%F E.g.f.: (1/6)*(-3 - 3*(3+2*x)*exp(x) + 17*exp(2*x) + exp(-x)). - _G. C. Greubel_, Jun 21 2024

%t LinearRecurrence[{3,-1,-3,2},{1,3,8,18,40},40] (* _Harvey P. Dale_, Jan 17 2024 *)

%o (PARI) Vec((1 + x^4) / ((1 - x)^2*(1 + x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, Sep 29 2017

%o (Magma) [n eq 0 select 1 else (17*2^n -6*n-9+(-1)^n)/6: n in [0..40]]; // _G. C. Greubel_, Jun 21 2024

%o (SageMath) [(17*2^n -6*n -9 +(-1)^n -3*int(n==0))/6 for n in range(41)] # _G. C. Greubel_, Jun 21 2024

%Y Cf. A026626, A026627, A026628, A026629, A026630, A026631, A026632.

%Y Cf. A026633, A026634, A026636, A026961, A026962, A026963, A026964.

%Y Cf. A026965.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_