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Abstract

We describe several occurrences of the morphism 1 → 121, 2 → 12221 and the closely related mor-
phism 2 → 211, 1 → 2 (as well as simple variants) in the literature. Furthermore we prove that a
sequence in the OEIS, proposed by Kimberling, is the same as a sequence independently studied by
Akiyama, Brunotte, Pethő, and Steiner related to a conjecture on the periodicity of certain piecewise
affine planar maps. Finally we prove conjectures of Kimberling and conjectures of Baysal in the OEIS.
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1 Introduction

A fantastic tool for the study of sequences of integers is the Online Encyclopedia of Integer Sequences
(OEIS) [26]. Every time one encounters a sequence of integers, one can (should) look for it in the OEIS:
very often, unexpected relations between sequences can be found. If not, it may happen that one finds
independently surprising links that will feed the Encyclopedia. Another aspect of the OEIS is that it
suggests conjectures it is always fun to work on. In this paper we focus on the sequence A026465 =
1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, . . . in the OEIS and closely related sequences.

We begin with a very brief discussion about morphisms of monoids generated by finite sets (for more
details, the reader can look at, e.g., [8, 22, 23]). Let A be a finite set. We let A∗ denote the free monoid
generated by A, equipped with the concatenation operation. The elements of A∗ are called words over the
alphabet A. If A and B are two finite sets, a morphism (i.e., a monoid morphism) from A∗ to B∗ is a map
from A∗ to B∗ that preserves the concatenation. Such a morphism is defined by its values on A. A morphism
from A∗ to itself is called a morphism of A∗. The union of A∗ and AN (the sequences—also called infinite
words—on A indexed by N = 0, 1, 2, . . . —or sometimes by 1, 2, . . . ) is equipped with the topology of simple
convergence (two words or sequences are “close” if they coincide on a “long” prefix).

In what follows we will be chiefly interested in the morphism ν of {1, 2}∗ defined by

ν(1) := 121, ν(2) := 12221.
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Iterating this morphism, starting from 1, we obtain successively

ν0(1) = 1

ν1(1) = 121

ν2(1) = 12112221121

...

When the number of iteration tends to infinity, the sequence of words 1, 121, 12112221121, . . . tends to an
infinite sequence N = 1211222112112112221 · · · . This is sequence A026465 in the OEIS.

In the sequel we will give several (sometimes unexpected) properties of the sequence N and of a cousin
sequence P defined in Section 2 below. Some of these properties are chosen from those given in the OEIS,
some others are not (yet) in the OEIS. Furthermore we will show that sequence A260456 in the OEIS [26]
is related to sequence N . Finally we will prove conjectures of Kimberling and conjectures of Baysal given in
the OEIS.

2 A cousin of the sequence N

Instead of the morphism ν above, consider the morphism ϕ defined on {1, 2}∗ by

ϕ(2) := 211, ϕ(1) := 2.

Iterating ϕ starting from 2, we obtain successively

ϕ0(2) = 2

ϕ1(2) = 211

ϕ2(2) = 21122

ϕ3(2) = 21122211211

...

When the number of iteration tends to infinity, the sequence of words 211, 21122, 21122211211, . . . tends to
an infinite sequence P := 211222112112112221 · · ·

It happens that N and P are very closely related as indicated in the classical proposition below. (For
the sake of completeness we give a proof inspired by the proof proposed in [6].)

Proposition 1 The sequence N is obtained by padding a 1 in front of the sequence P . In other words we
have N = 1P .

Proof. First, we note that, for any word x, we have 21ν(x) = ϕ2(x)21. It suffices to prove this equality for
x = 1, x = 2, which is immediate, and to extend it to any word by morphicity. Now, applying this equality
to the prefix of N of length k, say N(k), we obtain 21ν(N(k)) = ϕ2(N(k))21. Letting k go to infinity, this
gives 21ν(N) = ϕ2(N). Since ν(N) = N , this can be written 21N = ϕ2(N). Defining B by N = 1B, we
have

211B = ϕ2(1B) = ϕ2(1)ϕ2(B) = 211ϕ2(B) hence B = ϕ2(B).

This means that B is a fixed point of ϕ2. But P , being a fixed point of ϕ is also a fixed point of ϕ2. Since
ϕ2 clearly admits only one fixed point, one has B = P . �

Remark 2 Morphisms like ν and ϕ, namely for which there exists a fixed word, say z (here z = 21), such
that for all words x one has zν(x) = ϕ(x)z, are called conjugate. If xn is a sequence of words that converges
to an infinite word X, it is clear that the equalities zν(xn) = ϕ(xn)z for all n imply zν(X) = ϕ(X).

2



Remark 3 It is clear that the frequencies of 1 (resp. of 2) are the same in N and in P . Furthermore the

incidence matrix (see, e.g., [8, Section 8.2, p. 248]) of ν is

(
2 2
1 3

)
. It is primitive and positive, and its

Perron-Frobenius eigenvalue is equal to 4; the associated normalized positive vector is the vector

(
1/2
1/2

)
.

Hence the frequencies of 1 and 2 in N (and in P ) are equal to 1/2 (see, e.g., [8, Th. 8.4.6 and Th. 8.4.7, pp.
271–272]).

3 Relation with the (Prouhet-)Thue-Morse sequence

The Prouhet-Thue-Morse is a famous binary sequence that occurs in many contexts (see, e.g., [7]; also see
A010060 in the OEIS). One of the definitions of this sequence is that it is the fixed point beginning with 0
of the morphism m defined on {0, 1}∗ by m(0) := 01, m(1) := 10, so that this sequence is equal to

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 . . .

Writing this sequence as 0 11 0 1 00 11 00 1 0 1 1 . . . and defining the runs of this sequence as the
consecutive lengths of maximal blocks containing only 0 or only 1, we see that the sequence of runs of the
Prouhet-Thue-Morse sequence begins

1 2 1 1 2 2 2 1 1 . . .

This sequence of 1 and 2 is described in [11] (see page 86 and page 88), where it is used to compute
the block-complexity of the Thue-Morse sequence (i.e., the number of blocks of each length in the Thue-
Morse sequence). The fact that the sequence of runlengths of the Thue-Morse sequence is precisely N
appears, e.g., in [5, pp. 306–307], [4, p. 458], [25, p. 354], [3, p. 2122], and in [26, sequence A026465; 2019-
Dekking’s comment]:

Proposition 4 The sequence N , fixed point of the morphism ν, is the sequence of runlengths of the Prouhet-
Thue-Morse sequence.

This well-known statement can be proved, e.g., by using the locally catenative properties of morphic
sequences (for this aspect of morphic sequences, see [24]).

4 “Vile” integers and the sequence P = 2, 1, 1, 2, 2, 2, 1, 1, . . .

Recall that Fraenkel [16, p. 43] called “vile” the integers whose binary representation ends in an even number
of zeros. The increasing sequence of vile numbers is the sequence A003159 in [26]

1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, . . .

Among the marvellous properties of this sequence, we only note here that twice this sequence, namely the
“dopey” numbers [16, p. 43]

2, 6, 8, 10, 14, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, . . .

and the sequence itself from a partition of the positive integers. Furthermore the sequence can be linked to
the names of the first ten integers in Hungarian and in Japanese (see [28])! Note that this sequence is also
studied in [4].

Perhaps unexpectedly sequence A003159 is related to P . Namely, as indicated by Barry in the comments
on this sequence in [26]:

Theorem 5 (Barry) The first difference of sequence A003159 is sequence P . (Equivalently A003159 is the
summatory function of A026465.)
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5 The morphism ϕ, its fixed point P , and Sturmian sequences

Recall that for a sequence with values in the alphabet A, its recurrence function n� R(n) is the size of the
smallest window containing an occurrence of each block of this sequence, whatever its position is (the value

R(n) value can be infinite). The recurrence quotient of the sequence is defined by ρ := lim supn→∞
R(n)
n

(it can also be infinite). Finally we recall that a Sturmian sequence is a sequence defined on the alphabet
{0, 1}, that has exactly n+ 1 distinct blocks of length n. (For more about these definitions, in particular for
a geometric definition of Sturmian sequences, one can consult, e.g., [8, 18].) Cassaigne [13] proved in 1999
the following theorem, involving the sequence P (the fixed point of ϕ seen previously):

Theorem 6 (Cassaigne) Let [u] be the real number whose continued fraction expansion is given by

[u] := [2, 1, 1, 2, 2, 2, 1, 1, 2, . . . ]

where 211222112 . . . is sequence P . Then, the smallest accumulation point of the set of recurrence quotients
of all Sturmian sequences is equal to 2 + [u].

6 A conjecture of Mahler and a result of Dubickas

Mahler [20] defined Z-numbers as positive real numbers such that their fractional parts {α( 3
2 )n} belong to

[0, 1/2), for all n ≥ 0. Quoting [20]:

Several years ago, a Japanese colleague proposed to me the problem whether such Z-numbers
do in fact exist. I have not succeeded in solving this problem, but shall give here a number
of incomplete results. In particular, it will be proved that the set of all Z-numbers is at most
countable.

The question whether Z is empty or not, known as Mahler conjecture, is still open. Among the nu-
merous partial related results that have been obtained, one is curiously linked to the sequence N =
1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1 . . . Namely, let W (x) := 1 + 2x + x2 + x3 + 2x4 + · · · be the generating func-
tion of sequence N . Also let F (x) := W (−x). Dubickas proved [15] the following result for negative rationals
(also see [14] for related results).

Theorem 7 (Dubickas) Let b = −p/q, where p > q > 1 are two coprime positive integers. Then, for any
real number ξ, the sequence of fractional parts {ξbn}, n = 0, 1, 2, . . . , has a limit point ≤ 1− (1−F (q/p))/q;
also, if ξ 6= 0 then it has a limit point ≥ 1 − F (q/p))/q. In particular, for any real number ξ 6= 0, the
sequence of fractional parts {ξ(−3/2)n}, n = 0, 1, 2, . . . , has a limit point smaller than 0.533547 and a limit
point greater than 0.466452.

7 Sum-free sets and a family of morphism generalizing ϕ

Recall that a set S is called sum-free if S ∩ (S+S) = ∅, where S+S := {x+ y | x, y ∈ S}. Without entering
technical details, we indicate that the authors of [9] study sum-free sets generated by “period-k-folding
sequences”. The first differences of these sequences are morphic. For k = 1, the morphism is precisely ϕ.

8 Dimensions of the lower central series factors of a certain just
infinite Lie algebra

The following result was conjectured by Dekking and proved in [6]. It involves the morphism ν defined above
(recall that ν(1) := 121, ν(2) := 12221).

Theorem 8 (Allouche-Petrogradsky) Let R be the 2-generated just infinite nil graded fractal Lie su-
peralgebra defined in [21] in the case of characteristic 2. By discarding a few elements, one obtains a Lie
algebra also denoted by R. Then, the sequence (an)n≥1, defined by A = (an)n≥1 := dim Rn/Rn+1 = dim Rn

satisfies the property A = 1221ν(A).
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9 The morphism ϕ and a classical Kolam

The art of kolam (or kalam, or rangoli) is a traditional decorative art of pictures drawn on the ground with
rice flour. Present in India, kolam, or variations thereof, can be found in other countries (e.g., in the Vanuatu
Islands). To give a pictorial idea of a classical kolam, we only show the drawings below: this classical kolam
can be actually drawn by using the morphism ϕ: see [3]. The reader can consult references given in [3] for
more about kolam (and ethnomathematics).

10 A simple variant of N and the period-doubling sequence

Sequence A080426 in [26] is a variant of sequence N considered above. Namely, it is the fixed point of
1 → 131; 3 → 13331. Thus it is identical to the sequence N considered above, after replacing in N all 3’s
with 2’s. This sequence A080426 has several properties from which we select the following ones.

First we give a proof of a remark of Hofstadter in [26, A080426] applied to N .

Proposition 9 Let α be the morphism defined by α(1) := 2, α(2) := 112. Define a sequence of words Sn by
S0 := 1, and, for all n ≥ 0, Sn+1 := α(Sn). Then N = S0S1S2 · · ·Sn · · · .

Proof. To begin with, note that the sequence T := S0S1 · · ·Sn · · · satisfies T = 1α(T ). Recall that N = 1P ,
and that N (resp. P ) is the fixed point of ν (resp. ϕ) defined in the introduction. First, we prove that for all
words x ∈ {1, 2}∗ one has αν(x) = ϕ2α(x) (it suffices to prove this for x = 1 and x = 2 and to use morphicity).
As previously one can take for x an infinite word, in particular for N we obtain αν(N) = ϕ2α(N). But
ν(N) = N , thus α(N) = ϕ2(α(N)). This implies that α(N) is a fixed point of ϕ2, which admits a unique
fixed point, the fixed point of ϕ, i.e., P . Thus we have α(N) = P . Remembering that N = 1P this yields
N = 1P = 1α(N). Thus N and T satisfy the same equality X = 1α(X). But only one sequence satisfies this
equality: namely for such a sequence, 0X is the unique fixed point of the morphism α̃ defined on {0, 1, 2}
by α̃(0) := 01, α̃(1) := α(1), α̃(2) := α(2). �
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Now, we give relations between A080426 and A035263. Recall that sequence A035263 in [26], the period-
doubling sequence (also called the Feigenbaum sequence, as it occurs in the study of Feigenbaum cascades
in the iteration of unimodal functions of the interval) is defined as the fixed point of the morphism 1→ 10,
0→ 11.

Proposition 10 (Deléham, OEIS) Sequence A080426 is the length of the n-th run of 1’s in the period-
doubling sequence.

Remark 11 This link between A080426 and the period-doubling sequence is essentially the same as the
statement given in [10, p. 4] (with different notation): Let τ be the morphism 1 → 10, 3 → 1110. Then the
image by τ of A080426 is the period-doubling sequence.

Remark 12 Since the period-doubling sequence has no occurrence of 00 in it, the length of the n-th run of
1’s in this sequence is also the gap between two occurrences of 0 (considering that the first gap occurs just
before the occurrence of the first 0). It would be interesting to look at the sequence of gaps between the
successive occurrences of any given block: this has been done for the Thue-Morse sequence in [27].

Deléham states another result in the comments about sequence A003156, which shows that A003156 is
the summatory function of A080426.

Proposition 13 (Deléham, OEIS) Sequence A003156 is equal to the number of ones before the n-th zero
in the period-doubling sequence. (Thus, it is equal to the summatory function of A080426.)

In view of Propositions 10 and 13, one can ask whether there is also a similarity between the original
construction of A003156 and the sequence A080426. First, let us give the original construction of A003156.

Define three sequences (An)n≥1, (Bn)n≥1, (Cn)n≥1 by: A1 := 1, B1 := 3, C1 := 2, and, for n ≥ 2,

An := mex{Ai, Bi, Ci | i < n}, Bn := An + 2n, Cn := Bn − 1

(for a set of integers S, mex(S) is the least integer not in S). A003156 is by definition the sequence (An)n≥1.

These three sequences are studied in [12], where it is proved in particular that (An)n≥1, (Bn)n≥1, (Cn)n≥1
form a partition of the positive integers. Interestingly enough an expression for the summatory function of
the vile numbers (defined in Section 4 above) similar to the definition above can be found in [17], namely:
Let A′1 = 1, B′1 = 2, C ′1 = 3. For n ≥ 2, let

A′n := mex{A′i, B′i, C ′i | i < n}, B′n := mex({A′i, B′i, C ′i | i < n} ∪ {An}, C ′n := A′n +B′n.

Let (Dk)k be the increasing sequence of all integers n for which B′n = A′n.

It is not hard to see that 1
4Dk is precisely the sequence of vile numbers A003159 (see Section 4 above; also

see [4]).

Remark 14 The reader will have found the relation 2 · A003159(n) − n = A003156(n), for n ≥ 1, (given
by Deléham in the OEIS for A003156) which could be used to explain the similarity of the two definitions
involving “mex”. But, more generally, it is not clear what a general family of sequences defined in an
analogous way could be.

11 Another simple variant of sequence N

Another simple variant of N that can be found in the literature is obtained by replacing in N all 1’s by 0’s
and all 2’s by 1’s.
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11.1 A conjecture of Akiyama, Brunotte, Pethő and Thuswaldner, and Vivaldi

A conjecture in [2, Conjecture 6.1] and [29] stipulates that: For every real λ with |λ| < 2, all integer
sequences (ak)∈Z satisfying 0 ≤ ak−1 + λak + ak+1 < 1 are periodic. Particular cases of this conjecture
have been addressed in the literature, e.g., the computer assisted proof for the case where λ is the golden

ratio [19]. In 2008, Akiyama, Brunotte, Pethő and Steiner [1] addressed the cases λ ∈ {±1±
√
5

2 ,±
√

2,±
√

3}
in an ingenious geometrico-combinatorial proof: part of their proof use an avatar of the sequence N above,
namely the fixed point of the morphism 0→ 010, 1→ 01110, i.e., the sequence

Ñ := 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 . . .

(Note that this sequence can clearly be obtained by subtracting 1 from every term of N . Also see next

subsection.) The authors of [1] also consider the image of Ñ by the morphism 0 → 10, 1 → 110 (see [1,
p. 241]): let us call this sequence N#. It happens that sequence N# is equal to a sequence in the OEIS
independently proposed by Kimberling in 2015, namely A260456.

Theorem 15 Sequence A2604561 in the OEIS is equal to N#

Proof. First we we recall that N is the fixed point of the morphism ν, where ν(1) = 121, ν(2) = 12221. Also
we note that N# can clearly be defined as the image of sequence N by the morphism θ defined by θ(1) = 10,
θ(2) = 110.

Sequence A260456 in the OEIS is defined as the limit of the sequence of words (wn)n≥1, where w1 := 1,
and, for all n ≥ 0, w2n := w2n−10w2n−1 and w2n+1 := w2nw2n. Letting zn := w2n+1, we clearly have z0 = 1,
and, for all n ≥ 0, zn+1 = zn0znzn0zn. Furthermore the sequence of words (zn)n≥0 tends to A260456.

Now, we claim that, for all n ≥ 0, we have

θ(νn(1)) = zn0 and θ(νn(2)) = znzn0.

This is proved by induction on n. The property is clearly true for n = 0. If it is true for n, then

θ(νn+1(1)) = θ(νn(121)) = θ(νn(1))θ(νn(2))θ(νn(1)) = zn0znzn0zn0 = zn+10

and
θ(νn+1(2)) = θ(νn(12221)) = θ(νn(1))θ(νn(2))θ(νn(2))θ(νn(2))θ(νn(1))

= zn0znzn0znzn0znzn0zn0 = zn+1zn+10. �

11.2 Proofs of conjectures in the OEIS for sequences A284388 and A284391

In what follows we will address conjectures given in the OEIS for sequences A284388 and A284391 These
sequences take their values in {0, 1}. We could have changed the statements of conjectures and results in
this section by replacing in both sequences all 0’ by 1’s and all 1’s by 2’s to stick to our previous friend N ,
but we have chosen to work with the original statements. Hence we introduce the morphism ν̃ defined on
{0, 1} by ν̃(0) := 010, ν̃(1) := 01110, and we call Ñ its fixed point.

The sequences A284388 and A284391 in [26] are defined as the “limiting words” of the morphism 0→ 1,
1 → 001. More precisely, A284388 is defined as the “0-limiting word” of this morphism (i.e., as the fixed
point beginning with 0 of the square of this morphism); and A284391 is defined as the “1-limiting word”
of this morphism (i.e., as the fixed point beginning with 1 of the square of this morphism). Squaring the
morphism 0 → 1, 1 → 001, we obtain the morphism h defined by h(0) := 001, h(1) := 11001, so that
the sequences A284388 and A284391 are respectively the fixed point beginning with 0 and the fixed point
beginning with 1 of h. Actually both sequences are closely related to the sequence N , as will be explained
now.

1The fact that the name “A260456” is an anagram of “A026465”, though unexpected, is a pure coincidence.
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Theorem 16 Let ν̃ be the morphism defined on {0, 1} by ν̃(0) := 010, ν̃(1) := 01110. Let Ñ be its fixed
point. Then, we have the following properties.

∗ Deleting the first term (which is equal to 0) of A284388 yields the sequence Ñ .

∗ Replacing the first term (which is equal to 1) of A284391 with a 0 yields the sequence Ñ .

Proof. The morphism ν̃ is clearly, up to notation, the same as the morphism ν above (replace in ν the letter
1 with 0 and the letter 2 with 1). Then we note that ν̃ and h are conjugate. Namely,

01h(0) = 01001 = ν̃(0)01, 01h(1) = 0111001 = ν̃(1)01.

Thus, for all words x one has 01h(x) = ν̃(x)01. Hence, for any infinite sequence X, one has 01h(X) = ν̃(X).
So that, if X is one of the fixed points of h, i.e., h(X) = X, we have 01X = ν̃(X). We distinguish two cases:{

if X = 0Y then 010Y = ν̃(0Y ) = 010ν̃(Y ), thus Y = ν̃(Y );

if X = 1Z then 011Z = ν̃(1Z) = 01110ν̃(Z), thus Z = 10ν̃(Z); hence 0Z = 010ν̃(Z) = ν̃(0Z).

Noting that Ñ is the only fixed point of ν̃, this gives:{
if X = 0Y (i.e., X = A284388), then Y = Ñ ;

if X = 1Z (i.e., X = A284391), then 0Z = Ñ .
(1) �

Now we prove a conjecture of Kimberling (see [26, A284388] and [26, A284391]).

Theorem 17 The frequency of 0 and the frequency of 1 in the sequences A284388 and A284391 are all
equal to 1/2.

Proof. The result can be deduced from Eq. (1). Namely, these equalities imply that the frequencies of 0

and 1 in X = 0Y (resp. X = 1Z) are equal to those in Ñ . But these frequencies are of course equal to the
frequencies of 1 and 2 in N , hence to 1/2 (see Remark 3). Actually one can also give a direct proof, that is
exactly the same as the proof given in Remark 3, (taking the morphism h and its incidence matrix). �

It happens that what precedes can lead to proving other conjectures (with a slight correction) proposed
by Baysal in [26, A284388] and [26, A284391].

Theorem 18

(i) Excluding the first two terms of sequence A284388, if the runs of 1’s of length one are replaced with (a
single) 0, and the runs of 1’s of length three are replaced with (a single) 1, we get the same sequence
preceded by a 0.

(ii) The index distance between two consecutive 1’s is either one or three. Excluding the first two terms of
sequence A284388, if distances of one are replaced by 0, and distances of three are replaced by 1, we
get the same sequence.

(iii) Excluding the first term of A284391, if the runs of 1’s of length one are replaced with (a single) 0, and
the runs of 1’s of length three are replaced with (a single) 1, we get the same sequence.

(iv) The index distance between two consecutive 1 is either one or three in A284391. Excluding the first
term of A284391, if distances of one are replaced with 0, and distances of three are replaced with 1, we
get the same sequence.
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Proof. As we have in Equation (1) above, if A284388 = 0Y then Y = Ñ ; and if A284391 = 1Z, then

0Z = Ñ . Hence excluding the first two terms of A284388 or excluding the first term of A284391 gives the
same sequence, namely the sequence P̃ . Thus, it suffices to prove the first two assertions.

(i) In the proof of Theorem 16 we have seen that if X is sequence A284388, then X = 0Ñ . Thus,

excluding the first two terms of sequence A284388 yields the sequence P̃ obtained from sequence P (the

cousin of N in Section 2), by replacing (in P ) 1 with 0, and 2 with 1. Thus P̃ is the fixed point of the

morphism ϕ̃ defined by ϕ̃(1) := 100, ϕ̃(0) := 1. Note that Ñ = 0P̃ . Letting β denote the morphism defined

by β(0) := 100, β(1) := 11100, assertion (i) means that β(Ñ) = P̃ , i.e., β(0P̃ ) = P̃ , which can also be

written 100β(P̃ ) = P̃ . Now, in order to prove this last equality, it suffices to prove that, for all words x, one
has 100β(x) = ϕ2(x)100, since P is a fixed point of ϕ, hence of ϕ2. But this equality is clear for x = 0 or
x = 1, hence for all x by morphicity.

(ii) Recall that excluding the first two terms of sequence A284388 yields P̃ as indicated above. This
sequence, being a fixed point of the morphism ϕ̃ is also a fixed point of ϕ̃2. Since ϕ̃2(1) = 10011 and

ϕ̃2(0) = 100, we see that P̃ is composed of blocks 10011 and 100, and the letter following each such block
must be a 1. Thus, coding the index distances between consecutive 1’s by 0 for distances of one, and by
1 for distances of three, is exactly replacing in P̃ each block 10011 with 100, and each block 100 (followed

by another 100) with 1, thus yielding a sequence ε1ε2 . . . Hence, writing P̃ = w1w2 · · · , where wi is either
10011, or 100 (followed by another 100), we have that wi = ϕ̃2(εi), where εi = 0 if wi = 10011, and εi = 1

if wi = 100 (followed by another 100). So that P̃ = ϕ̃2(ε1ε2 . . . ). But we also have that P̃ = ϕ2(P̃ ). Since

there clearly is only one decomposition of P̃ into blocks 10011, and 100 (followed by another 100), this

implies that P̃ = ε1ε2 . . . , which is the assertion we wanted to prove. �

Remark 19 As M. Dekking told me after reading a previous version of this paper, one can make the proof
of Theorem 18 simpler by using return words, or even, in this particular case, by seeing directly that A284388
is composed of blocks 001 and 1 and that the morphism ruling these blocks is quite easy to obtain.

Acknowledgments We warmly thank M. Dekking for several remarks, suggestions, and simplifications and
J. Shallit for very useful comments on a previous version of this paper. We are also deeply grateful to É.
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Sierpiński et morphismes de monöıde, Ann. Inst. Fourier (Grenoble) 56 (2006), 2115–2130.

[4] J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, B. E. Sagan, A relative of the
Thue-Morse sequence, Formal power series and algebraic combinatorics (Montreal, PQ, 1992), Discrete
Math. 139 (1995), 455–461.

[5] J.-P. Allouche, M. Mendès France, Automata and automatic sequences, in Beyond quasicrystals, Papers
from the Winter School held in Les Houches, March 7–18, 1994. Edited by F. Axel and D. Gratias,
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