login
A026337
a(n) = 4^n*(4^n - 1)/2.
3
0, 6, 120, 2016, 32640, 523776, 8386560, 134209536, 2147450880, 34359607296, 549755289600, 8796090925056, 140737479966720, 2251799780130816, 36028796884746240, 576460751766552576, 9223372034707292160, 147573952581086478336, 2361183241400462868480
OFFSET
0,2
FORMULA
a(n) = binomial(4^n, 2), n >= 0. - Zerinvary Lajos, Jan 07 2008
From R. J. Mathar, Mar 20 2009: (Start)
a(n) = 20*a(n-1) - 64*a(n-2).
G.f.: 6*x/((1-4*x)*(1-16*x)). (End)
a(n) = 6*A166984(n-1). - R. J. Mathar, Jun 23 2013
E.g.f.: exp(10*x)*sinh(6*x). - G. C. Greubel, Oct 02 2024
MAPLE
seq(binomial(4^n, 2), n=0..18); # Zerinvary Lajos, Jan 07 2008
MATHEMATICA
Table[4^n (4^n-1)/2, {n, 0, 30}] (* or *) LinearRecurrence[{20, -64}, {0, 6}, 30] (* Harvey P. Dale, Nov 05 2023 *)
PROG
(Magma) [4^n*(4^n-1)/2: n in [0..30]]; // Vincenzo Librandi, May 01 2011
(SageMath) [binomial(4^n, 2) for n in range(21)] # G. C. Greubel, Oct 02 2024
CROSSREFS
Cf. A166984.
Sequence in context: A048604 A001516 A350712 * A223629 A065888 A246191
KEYWORD
nonn
STATUS
approved