%I
%S 14,23,36,51,69,90,114,143,175,211,251,295,345,399,458,522,591,667,
%T 748,835,928,1027,1134,1247,1367,1494,1628,1771,1921,2079,2245,2419,
%U 2603,2795,2996,3206,3425,3655,3894,4143,4402,4671,4952,5243,5545,5858,6182,6519,6867,7227,7599,7983,8381
%N a(n) = (d(n)r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,3,1,0,1,3,3,1).
%F a(n) = (n + 6)*(n^2 + 30*n + 71)/30  1/5*(1 + 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(2*n*Pi/5)  2/5*5^(1/2)*cos(4*n*Pi/5) + 2/5*2^(1/2)*(5  5^(1/2))^(1/2)*sin(4*n*Pi/5)). [_Richard Choulet_, Dec 14 2008]
%F G.f.: (1419*x+9*x^22*x^3+x^414*x^5+19*x^67*x^7) / ( (x^4+x^3+x^2+x+1)*(x1)^4 ).  _R. J. Mathar_, Jun 23 2013 [Corrected by _Georg Fischer_, May 18 2019]
%t CoefficientList[Series[(1419*x+9*x^22*x^3+x^414*x^5+19*x^67*x^7) / ( (x^4+x^3+x^2+x+1)*(x1)^4), {x, 0, 52}], x] (* _Georg Fischer_, May 18 2019 *)
%o (PARI) my(x='x+O('x^20)); Vec((1419*x+9*x^22*x^3+x^414*x^5+19*x^67*x^7) / ((x^4+x^3+x^2+x+1)*(x1)^4)) \\ _Felix FrÃ¶hlich_, May 18 2019
%Y Cf. A152898.
%K nonn
%O 6,1
%A _Clark Kimberling_
