login
Expansion of 1/((1-2x)(1-5x)(1-6x)(1-12x)).
0

%I #9 Jul 30 2015 22:33:23

%S 1,25,417,5909,77369,972381,11958289,145367893,1756276137,21149737037,

%T 254259660161,3053974195077,36665246878105,440090336260093,

%U 5281738449973233,63384838751399861,760642183440232073

%N Expansion of 1/((1-2x)(1-5x)(1-6x)(1-12x)).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (25, -208, 684, -720).

%F a(0)=1, a(1)=25, a(2)=417, a(3)=5909, a(n)=25*a(n-1)- 208*a(n-2)+ 684*a(n-3)-720*a(n-4). - _Harvey P. Dale_, May 20 2013

%F a(n) = -2^n/15 +125*5^n/21 -9*6^n/1 +144*12^n/35. _R. J. Mathar_, Jun 20 2013

%t CoefficientList[Series[1/((1-2x)(1-5x)(1-6x)(1-12x)),{x,0,20}],x] (* or *) LinearRecurrence[{25,-208,684,-720},{1,25,417,5909},20] (* _Harvey P. Dale_, May 20 2013 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_.