login
Expansion of 1/((1-x^6)*(1-x^7)*(1-x^9)).
6

%I #12 Jan 23 2024 02:14:13

%S 1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,1,0,2,1,1,2,1,1,2,2,1,3,2,1,3,2,2,3,

%T 3,2,4,3,2,4,3,3,5,4,3,5,4,3,6,5,4,6,5,4,7,6,5,7,6,5,8,7,6,9,7,6,9,8,

%U 7,10,9,7,11,9,8,11,10,9,12

%N Expansion of 1/((1-x^6)*(1-x^7)*(1-x^9)).

%C a(n) is the number of partitions of n into parts 6, 7, and 9. - _Joerg Arndt_, Jan 23 2024

%H G. C. Greubel, <a href="/A025898/b025898.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1,1,0,1,0,0,0,-1,0,-1,-1,0,0,0,0,0,1).

%t CoefficientList[Series[1/((1-x^6)*(1-x^7)*(1-x^9)), {x,0,100}], x] (* _G. C. Greubel_, Jan 22 2024 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^7)*(1-x^9)) )); // _G. C. Greubel_, Jan 22 2024

%o (SageMath)

%o def A025898_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/((1-x^6)*(1-x^7)*(1-x^9)) ).list()

%o A025898_list(100) # _G. C. Greubel_, Jan 22 2024

%Y Cf. A025896, A025897, A025899, A025900, A025901, A025902, A025903.

%K nonn

%O 0,19

%A _N. J. A. Sloane_