%I #12 Jan 23 2024 02:14:13
%S 1,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,1,0,2,1,1,2,1,1,2,2,1,3,2,1,3,2,2,3,
%T 3,2,4,3,2,4,3,3,5,4,3,5,4,3,6,5,4,6,5,4,7,6,5,7,6,5,8,7,6,9,7,6,9,8,
%U 7,10,9,7,11,9,8,11,10,9,12
%N Expansion of 1/((1-x^6)*(1-x^7)*(1-x^9)).
%C a(n) is the number of partitions of n into parts 6, 7, and 9. - _Joerg Arndt_, Jan 23 2024
%H G. C. Greubel, <a href="/A025898/b025898.txt">Table of n, a(n) for n = 0..5000</a>
%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1,1,0,1,0,0,0,-1,0,-1,-1,0,0,0,0,0,1).
%t CoefficientList[Series[1/((1-x^6)*(1-x^7)*(1-x^9)), {x,0,100}], x] (* _G. C. Greubel_, Jan 22 2024 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^7)*(1-x^9)) )); // _G. C. Greubel_, Jan 22 2024
%o (SageMath)
%o def A025898_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/((1-x^6)*(1-x^7)*(1-x^9)) ).list()
%o A025898_list(100) # _G. C. Greubel_, Jan 22 2024
%Y Cf. A025896, A025897, A025899, A025900, A025901, A025902, A025903.
%K nonn
%O 0,19
%A _N. J. A. Sloane_