login
Expansion of 1/((1-x^2)(1-x^7)(1-x^10)).
0

%I #7 Jul 30 2015 22:16:16

%S 1,0,1,0,1,0,1,1,1,1,2,1,2,1,3,1,3,2,3,2,4,3,4,3,5,3,5,4,6,4,7,5,7,5,

%T 8,6,8,7,9,7,10,8,11,8,12,9,12,10,13,11,14,12,15,12,16,13,17,14,18,15,

%U 19,16,20,17,21,18,22,19,23

%N Expansion of 1/((1-x^2)(1-x^7)(1-x^10)).

%H <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 0, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, 0, 0, -1, 0, 1).

%F a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=0, a(6)=1, a(7)=1, a(8)=1, a(9)=1, a(10)=2, a(11)=1, a(12)=2, a(13)=1, a(14)=3, a(15)=1, a(16)=3, a(17)=2, a(18)=3, a(n)=a(n-2)+a(n-7)-a(n-9)+a(n-10)-a(n-12)- a(n-17)+ a(n-19). - _Harvey P. Dale_, Sep 21 2013

%t CoefficientList[Series[1/((1-x^2)(1-x^7)(1-x^10)),{x,0,100}],x] (* or *) LinearRecurrence[{0,1,0,0,0,0,1,0,-1,1,0,-1,0,0,0,0,-1,0,1},{1,0,1,0,1,0,1,1,1,1,2,1,2,1,3,1,3,2,3},100] (* _Harvey P. Dale_, Sep 21 2013 *)

%K nonn

%O 0,11

%A _N. J. A. Sloane_.