login
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)).
0

%I #7 Apr 18 2023 08:38:28

%S 1,0,1,0,1,1,2,1,2,1,3,2,4,2,4,3,5,4,6,4,7,5,8,6,9,7,10,8,11,9,13,10,

%T 14,11,15,13,17,14,18,15,20,17,22,18,23,20,25,22,27,23,29,25,31,27,33,

%U 29,35,31,37,33,40,35,42,37

%N Expansion of 1/((1-x^2)(1-x^5)(1-x^6)).

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,0,1,1,-1,-1,0,0,-1,0,1).

%F G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)).

%F a(n) = a(n-2) + a(n-5) + a(n-6) - a(n-7) - a(n-8) - a(n-11) + a(n-13). - _Wesley Ivan Hurt_, Apr 18 2023

%t CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)),{x,0,90}],x] (* or *) LinearRecurrence[ {0,1,0,0,1,1,-1,-1,0,0,-1,0,1},{1,0,1,0,1,1,2,1,2,1,3,2,4},90] (* _Harvey P. Dale_, May 06 2022 *)

%K nonn

%O 0,7

%A _N. J. A. Sloane_.