login
Expansion of 1/((1-x)(1-x^4)(1-x^9)).
0

%I #10 Jul 30 2015 22:14:05

%S 1,1,1,1,2,2,2,2,3,4,4,4,5,6,6,6,7,8,9,9,10,11,12,12,13,14,15,16,17,

%T 18,19,20,21,22,23,24,26,27,28,29,31,32,33,34,36,38,39,40,42,44,45,46,

%U 48,50,52,53,55,57,59,60,62

%N Expansion of 1/((1-x)(1-x^4)(1-x^9)).

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, -1, 1).

%F a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2, a(5)=2, a(6)=2, a(7)=2, a(8)=3, a(9)=4, a(10)=4, a(11)=4, a(12)=5, a(13)=6, a(n)=a(n-1)+a(n-4)-a(n-5)+ a(n-9)-a(n-10)-a(n-13)+a (n-14). - _Harvey P. Dale_, Nov 11 2013

%F a(n) = floor(((n^2+14*n+76)+18*cos((n-1)*Pi/2))/72). - _Tani Akinari_, May 02 2014

%t CoefficientList[Series[1/((1-x)(1-x^4)(1-x^9)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,0,1,-1,0,0,0,1,-1,0,0,-1,1},{1,1,1,1,2,2,2,2,3,4,4,4,5,6},70] (* _Harvey P. Dale_, Nov 11 2013 *)

%K nonn

%O 0,5

%A _N. J. A. Sloane_.