The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024942 Number of partitions of n into distinct primes of the form 4k + 3. 2
 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 2, 0, 0, 2, 1, 0, 1, 2, 2, 1, 1, 2, 1, 1, 0, 2, 3, 0, 2, 3, 3, 0, 1, 4, 1, 1, 2, 4, 2, 1, 3, 3, 3, 1, 3, 4, 3, 2, 2, 6, 3, 1, 4, 6, 4, 1, 6, 6, 3, 3, 5, 7, 3, 3, 6, 7, 6, 2, 7, 9, 3, 2, 7, 10, 2, 4, 11, 10, 4, 5, 12, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,27 COMMENTS a(0) = 1 corresponds to the empty partition {}. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 EXAMPLE a(26) = 2 since 26 = 3 + 23 = 7 + 19. Even though 27 = (3 * 3) + 7 + 11 = (2 * 3) + (3 * 7) = (9 * 3), there is no partition of 27 into primes of the form 4k - 1 with all parts distinct. Hence a(27) = 0. MATHEMATICA searchMax = 108; primes4km1 = Select[4Range[Ceiling[searchMax/4]] - 1, PrimeQ]; Table[Length[Select[IntegerPartitions[n, All, primes4km1], DuplicateFreeQ]], {n, 0, searchMax}] (* Alonso del Arte, Apr 16 2019 *) PROG (PARI) { my(V=select(x->x%4==3, primes(40))); my(x='x+O('x^V[#V])); Vec(prod(k=1, #V, 1+x^V[k])) } \\ Joerg Arndt, Apr 19 2019 CROSSREFS Cf. A024941 (4k + 1). Sequence in context: A085862 A257392 A237123 * A210255 A283319 A049321 Adjacent sequences:  A024939 A024940 A024941 * A024943 A024944 A024945 KEYWORD nonn AUTHOR EXTENSIONS Definition clarified by Felix FrÃ¶hlich, Apr 17 2019 a(0) = 1 prepended by Joerg Arndt, Apr 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 19:16 EDT 2021. Contains 343156 sequences. (Running on oeis4.)